
Search for articles, questions, tips

home quick answers discussions features community helparticles

Articles » Platforms, Frameworks & Libraries » Universal Windows Platform and Windows Runtime » General

Pete O'Hanlon, 9 Mar 2018

FluentRealSense – The First Steps to a Simpler RealSense

Those who know me are aware that I have a long term association (nay, let’s say it for what it is, love affair) with the

RealSense platforms from Intel.

Those who know me are aware that I have a long term association (nay, let’s say it for what it is, love affair) with the RealSense

platforms from Intel. If you’ve been following developments in that space for any length of time, you’re probably aware that

things have moved on a lot and the cameras are available in all sorts of devices and are no longer just limited to the Windows

platform. This shift of emphasis means that Intel have moved away from concentrating on the old monolithic RealSense SDK and

have moved to supporting a new open source API (available here: https://github.com/IntelRealSense/librealsense).

I have spent a period of time working with this API as it has evolved and have started “wrapping” it to make it a little bit friendlier

to use (in my opinion) for people who don’t want to get bogged down with the “nitty gritty” of how to get devices, and so on.

This work has been in C++, the language the API is available in, and I am going to cover, over a series of posts, how this library

evolved. I’ll show you the code I’ve written at each step so that you can also see how I have gone about relearning modern C++

(bearing in mind it has been 18 years since I last worked with it in anger) so you will definitely find that early iterations of the

code are naive, at best. My aim with this library was to make it as fluent as possible, hence it’s name, FluentRealSense.

An upfront note. Early iterations of this codebase have been done entirely on Windows running Visual Studio 2017. I chose this

particular environment because, a) Visual Studio is, to my mind, the finest IDE around and b) because 2017 supports porting your

C++ code directly over to Linux. This lets me leverage the rapid turnaround time I’m used to in my dev environment and the

ease of deploying to my intended targets later on. Thank you Microsoft for keeping this old developer happy.

Let’s start with the first iteration. The first thing I wanted the code to do was to provide me with the ability to iterate over all the

cameras on my system and print out some diagnostic information. This meant that my code would be broken down initially into

three classes:

information: This class reads information from the API about a single camera and returns it as a string.

camera: This is a single device. Initially, it’s just going to instantiate and provide access to the information class.

cameras: The entry point for consuming applications, this class is responsible for finding out about and managing

access to each camera; this class is also enumerable so that the calling code can quickly iterate over each camera.

Let’s start off by looking at the information class. First, we’re going to add some includes and namespaces:

#pragma once

#include "hpp/rs_context.hpp"

using namespace std;

 5.00 (1 vote) Rate this:

Hide Copy Code

13,456,395 members Sign in

FluentRealSense – The First Steps to a Simpler RealSense - CodeProject https://www.codeproject.com/Articles/1233892/FluentRealSense-The-...

1 of 8 23/03/2018, 07:56

using namespace rs2;

class information

{

public:

class information() {}

~information() {}

}

That’s all very straightforward and nothing you won’t have seen before. Let’s start fleshing this out.

The first thing we’re going to need is a RealSense device to get information from – this is going to be passed in so let’s add a

member to store it and replace our constructor with this:

explicit information(const device device) : device_(device) {}

:::

private:

device device_;

At this stage, our code looks like this:

#pragma once

#include "hpp/rs_context.hpp"

using namespace std;

using namespace rs2;

class information

{

public:

explicit information(const device device) : device_(device) {}

~information() {}

private:

device device_;

}

I have to say, at this point, I love the improvements to instantiating members that C++ now provides. This is a wonderful little

innovation.

Now, in order to get the information out of the API, I’m going to add a handy little private helper method. This makes use of

the fact that the API exposes this information via an rs2_camera_info enumeration:

const char* get_info(const rs2_camera_info info) const

{

if (!device_.supports(info))

{

return "Not supported";

}

return device_.get_info(info);

}

This is the first point that our code is going to add any value. Whenever we call get_info against the underlying device, we

have to check that that particular type of info can be retrieved for that device. It’s very easy to write code that makes

assumptions that each camera supports exactly the same set of properties here so the underlying call could throw an exception.

To get around this, our code checks to see if the device supports that particular rs2_camera_info type and returns “Not

supported” if it doesn’t. It is so easy to forget that you should always pair the get_info with the supports, so this helper

method removes the need to remember that.

So, how do we use this? Well, with some public methods like these:

Hide Copy Code

Hide Copy Code

Hide Copy Code

Hide Shrink Copy Code

FluentRealSense – The First Steps to a Simpler RealSense - CodeProject https://www.codeproject.com/Articles/1233892/FluentRealSense-The-...

2 of 8 23/03/2018, 07:56

const char* name() const

{

return get_info(RS2_CAMERA_INFO_NAME);

}

const char* serial_number() const

{

return get_info(RS2_CAMERA_INFO_SERIAL_NUMBER);

}

const char* port() const

{

return get_info(RS2_CAMERA_INFO_PHYSICAL_PORT);

}

const char* firmware_version() const

{

return get_info(RS2_CAMERA_INFO_FIRMWARE_VERSION);

}

const char* debug_opCode() const

{

return get_info(RS2_CAMERA_INFO_DEBUG_OP_CODE);

}

const char* advanced_mode() const

{

return get_info(RS2_CAMERA_INFO_ADVANCED_MODE);

}

const char* product_id() const

{

return get_info(RS2_CAMERA_INFO_PRODUCT_ID);

}

const char* camera_locked() const

{

return get_info(RS2_CAMERA_INFO_CAMERA_LOCKED);

}

string dump_diagnostic() const

{

string text = "\nDevice Name: ";

text += name();

text += "\n Serial number: ";

text += serial_number();

text += "\n Port: ";

text += port();

text += "\n Firmware version: ";

text += firmware_version();

text += "\n Debug op code: ";

text += debug_opCode();

text += "\n Advanced Mode: ";

text += advanced_mode();

text += "\n Product id: ";

text += product_id();

text += "\n Camera locked: ";

text += camera_locked();

return text;

}

We now have our complete information class. It looks like this:

#pragma once

#include "hpp/rs_context.hpp"

Hide Shrink Copy Code

FluentRealSense – The First Steps to a Simpler RealSense - CodeProject https://www.codeproject.com/Articles/1233892/FluentRealSense-The-...

3 of 8 23/03/2018, 07:56

using namespace std;

using namespace rs2;

class information

{

public:

explicit information(const device device) : device_(device) {}

~information()

{

}

const char* name() const

{

return get_info(RS2_CAMERA_INFO_NAME);

}

const char* serial_number() const

{

return get_info(RS2_CAMERA_INFO_SERIAL_NUMBER);

}

const char* port() const

{

return get_info(RS2_CAMERA_INFO_PHYSICAL_PORT);

}

const char* firmware_version() const

{

return get_info(RS2_CAMERA_INFO_FIRMWARE_VERSION);

}

const char* debug_opCode() const

{

return get_info(RS2_CAMERA_INFO_DEBUG_OP_CODE);

}

const char* advanced_mode() const

{

return get_info(RS2_CAMERA_INFO_ADVANCED_MODE);

}

const char* product_id() const

{

return get_info(RS2_CAMERA_INFO_PRODUCT_ID);

}

const char* camera_locked() const

{

return get_info(RS2_CAMERA_INFO_CAMERA_LOCKED);

}

string dump_diagnostic() const

{

 string text = "\nDevice Name: ";

 text += name();

 text += "\n Serial number: ";

 text += serial_number();

 text += "\n Port: ";

 text += port();

 text += "\n Firmware version: ";

 text += firmware_version();

 text += "\n Debug op code: ";

 text += debug_opCode();

 text += "\n Advanced Mode: ";

 text += advanced_mode();

 text += "\n Product id: ";

 text += product_id();

 text += "\n Camera locked: ";

 text += camera_locked();

FluentRealSense – The First Steps to a Simpler RealSense - CodeProject https://www.codeproject.com/Articles/1233892/FluentRealSense-The-...

4 of 8 23/03/2018, 07:56

return text;

}

private:

const char* get_info(const rs2_camera_info info) const

 {

if (!device_.supports(info))

 {

return "Not supported";

 }

return device_.get_info(info);

 }

 device device_;

};

The next thing we have to do is write a class that represents a single RealSense camera. There’s not much to this class, at the

moment, so let’s look at it in its entirety.

#pragma once

#include "hpp/rs_context.hpp"

#include "information.h"

using namespace std;

using namespace rs2;

class camera

{

public:

explicit camera(const device dev) : information_(make_shared(dev)) {}

 ~camera()

 {

 }

 shared_ptr get_information() const

 {

return information_;

 }

private:

 shared_ptr information_;

};

I did say this class was pretty light at the moment. The class accepts a single RealSense device which is used to instantiate the

information class. We provide one method which is used to get the instance of the information class. That’s it so far.

Finally, we come to the entry point of our code, the cameras class. This class lets us enumerate all of the cameras on our

system and access the functions inside. As usual, we’ll start off with the definition:

#pragma once

#include

#include

#include "camera.h"

#include "hpp/rs_context.hpp"

using namespace std;

using namespace rs2;

class cameras

{

public:

 cameras() {}

 ~cameras() {}

}

Hide Copy Code

Hide Copy Code

FluentRealSense – The First Steps to a Simpler RealSense - CodeProject https://www.codeproject.com/Articles/1233892/FluentRealSense-The-...

5 of 8 23/03/2018, 07:56

As you will remember, I said that I wanted the cameras to be enumerable so I need to do some upfront declarations:

using cameras_t = vector<shared_ptr>;

using iterator = cameras_t::iterator;

using const_iterator = cameras_t::const_iterator;

[/source]

With these in place, I can now start to add the ability to enumerate over the camera instances. Before I do that, though, it’s

time to introduce something new. In the preceding code, we saw that the RealSense camera was represented as a device that we

passed into the relevant constructors. The question is, how did we get that device in the first place? Well, that’s down to the API

providing a context that allows us to access these devices. So, let’s add a member to store a vector of camera instances and

then build in the method to get the list of devices.

cameras() : cameras_(make_shared())

{

 context context;

// Iterate over the devices;

auto devices = context.query_devices();

for (const auto dev : devices)

 {

const auto cam = make_shared(dev);

 cameras_->push_back(cam);

 }

}

private:

 shared_ptr cameras_;

There’s nothing complicated in that code. We get the devices from the context using query_devices and iterate over each

one, adding a new camera instance to our vector. We have reached the point where we can now add the ability to enumerate

over our vector. All the scaffolding is in place so let’s add that capability.

int capacity() const

{

return cameras_->capacity();

}

iterator begin() { return cameras_->begin(); }

iterator end() { return cameras_->end(); }

const_iterator begin() const { return cameras_->begin(); }

const_iterator end() const { return cameras_->end(); }

const_iterator cbegin() const { return cameras_->cbegin(); }

const_iterator cend() const { return cameras_->cend(); }

That’s it. We now have the ability to build and iterate over the devices on our system. Let’s see how we would go about using

that. To test it, I created a little console application that I used to call my code. It’s as easy as this:

#include "stdafx.h"

#include "cameras.h"

#include

int main()

{

const auto devices = std::make_shared();

for (auto &dev : *devices)

{

cout <get_information()->dump_diagnostic();

}

return 0;

Hide Copy Code

Hide Copy Code

Hide Copy Code

Hide Copy Code

FluentRealSense – The First Steps to a Simpler RealSense - CodeProject https://www.codeproject.com/Articles/1233892/FluentRealSense-The-...

6 of 8 23/03/2018, 07:56

}

This is what it looks like on my system (running a web camera and a separate RealSense camera).

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)

Share

About the Author

TWITTER

A developer for over 30 years, I've been lucky enough to write articles and applications for Code Project as well as the Intel

Ultimate Coder - Going Perceptual challenge. I live in the North East of England with 2 wonderful daughters and a wonderful

wife.

I am not the Stig, but I do wish I had Lotus Tuned Suspension.

Pete O'Hanlon
CEO

United

Kingdom

FluentRealSense – The First Steps to a Simpler RealSense - CodeProject https://www.codeproject.com/Articles/1233892/FluentRealSense-The-...

7 of 8 23/03/2018, 07:56

Permalink | Advertise | Privacy | Terms of Use | Mobile

Web03 | 2.8.180322.1 | Last Updated 9 Mar 2018
Select Language ▼

Article Copyright 2018 by Pete O'Hanlon

Everything else Copyright © CodeProject, 1999-2018
Layout: fixed | fluid

Search Comments

You may also be interested in...

Connecting Intel® RealSense™

3D Camera With the Intel®

Edison - JavaScript

Window Tabs (WndTabs) Add-

In for DevStudio

Intel® RealSense™ SDK

Architecture

Introduction to D3DImage

SAPrefs - Netscape-like

Preferences Dialog

Creating alternate GUI using

Vector Art

Comments and Discussions

You must Sign In to use this message board.

Spacing Relaxed Layout Normal Per page 25 Update

-- There are no messages in this forum --

FluentRealSense – The First Steps to a Simpler RealSense - CodeProject https://www.codeproject.com/Articles/1233892/FluentRealSense-The-...

8 of 8 23/03/2018, 07:56

