
101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
www.altera.com

Reed-Solomon Compiler

User Guide

Compiler Version: 4.1.0
Document Version: 4.1.0
Document Date: April 2006Operations Part Number

http://www.altera.com

Copyright © 2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

ii Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide

UG-RSCOMPILER-4.3

Altera Corporation Compiler Version 4.1.0 iii

Contents

About This User Guide ... v
Revision History .. v
How to Contact Altera ... vii
Typographic Conventions .. viii

Chapter 1. About This Compiler
Release Information ... 1–1
Device Family Support ... 1–1
New in Version 4.1.0 ... 1–2
Features ... 1–2
General Description ... 1–2

OpenCore Plus Evaluation .. 1–3
DSP Builder Support .. 1–3

Performance .. 1–4

Chapter 2. Getting Started
Design Flow .. 2–1
RS Compiler Walkthrough ... 2–2

Create a New Quartus II Project .. 2–2
Launch IP Toolbench ... 2–3
Step 1: Parameterize ... 2–4
Step 2: Set Up Simulation .. 2–7
Step 3: Generate .. 2–9

Simulate the Design ... 2–11
Compile the Design ... 2–12
Program a Device .. 2–12
Set Up Licensing .. 2–12

Chapter 3. Specifications
Functional Description .. 3–1

Erasures ... 3–2
Shortened Codewords ... 3–3
Variable Encoding & Decoding .. 3–3
Interfaces .. 3–4
RS Encoder .. 3–4
RS Decoder .. 3–6
OpenCore Plus Time-Out Behavior ... 3–9

Parameters .. 3–9
Signals ... 3–11
MegaCore Verification .. 3–14

iv Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide

Contents

Throughput Calculator ... 3–14

Appendix A: Using the RS Encoder or Decoder in a CCSDS System
Introduction ... A–1
Test Patterns .. A–1

Appendix B: Implementing Atlantic Slave Source Interface Control
Stimulus & Response Block Files .. B–4

Appendix C: Information for Version 3.6.0 Users

Altera Corporation Compiler Version 4.1.0 v
Reed-Solomon Compiler User Guide

About This User Guide

Revision History The table below displays the revision history for the chapters in this user
guide.

Chapter Date Version Changes Made

All April 2006 4.1.0 Implemented minor format changes.

1 November 2005 4.0.1 No changes.

October 2005 4.0.0 ● Updated device family support table.
● Updated performance table.

June 2004 3.5.0 ● Updated device family support table.
● Added DSP Builder support.

February 2004 3.4.0 ● Updated device family support table.
● Added OpenCore® Plus description.
● Updated performance figures.

2 November 2005 4.0.1 No changes.

October 2005 4.0.0 ● Updated flow.
● Updated simulation walkthrough.
● Updated generated files table.

June 2004 3.5.0 ● Updated system requirements.
● Updated Quartus® II software information.

February 2004 3.4.0 ● Added IP Toolbench flow.
● Added IP functional simulation models information.

3 November 2005 4.0.1 No changes.

October 2005 4.0.0 ● Rewritten encoder and decoder descriptions for Atlantic™ interfaces.
● Rewritten signals tables.
● Updated parameters table.
● Updated encoder timing figures.
● Updated reset description.

July 2004 3.6.0 Updated reset signal information.

February 2004 3.4.0 Added OpenCore Plus information.

A November 2005 4.0.1 No changes.

October 2005 4.0.0 No changes.

February 2004 3.4.0 Added Appendix A.

B November 2005 4.0.1 No changes.

October 2005 4.0.0 Added Appendix B.

vi Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide

Revision History

C November 2005 4.0.1 No changes.

October 2005 4.0.0 Added Appendix C.

Chapter Date Version Changes Made

Altera Corporation Compiler Version 4.1.0 vii
Reed-Solomon Compiler User Guide

About This User Guide

How to Contact
Altera

For the most up-to-date information about Altera® products, go to the
Altera world-wide web site at www.altera.com. For technical support on
this product, go to www.altera.com/mysupport. For additional
information about Altera products, consult the sources shown below.

Information Type USA & Canada All Other Locations

Technical support www.altera.com/mysupport/ www.altera.com/mysupport/

800-800-EPLD (3753)
7:00 a.m. to 5:00 p.m. Pacific Time

+1 408-544-8767
7:00 a.m. to 5:00 p.m. (GMT -8:00)
Pacific Time

Product literature www.altera.com www.altera.com

Altera literature services literature@altera.com literature@altera.com

Non-technical customer
service

800-767-3753 + 1 408-544-7000
7:00 a.m. to 5:00 p.m. (GMT -8:00)
Pacific Time

FTP site ftp.altera.com ftp.altera.com

http://www.altera.com
http://www.altera.com/mysupport/
http://www.altera.com
mailto:literature@altera.com
mailto:literature@altera.com
ftp://ftp.altera.com
ftp://ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport
http://www.altera.com/mysupport/

viii Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide

Typographic Conventions

Typographic
Conventions

This document uses the typographic conventions shown below.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c
The caution indicates required information that needs special consideration and
understanding and should be read prior to starting or continuing with the
procedure or process.

w The warning indicates information that should be read prior to starting or
continuing the procedure or processes

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

Altera Corporation Compiler Version 4.1.0 1–1
April 2006

1. About This Compiler

Release
Information

Table 1–1 provides information about this release of the Reed-Solomon
(RS) Compiler.

Device Family
Support

MegaCore® functions provide either full or preliminary support for target
Altera® device families, as described below:

■ Full support means the MegaCore function meets all functional and
timing requirements for the device family and may be used in
production designs

■ Preliminary support means the MegaCore function meets all
functional requirements, but may still be undergoing timing analysis
for the device family; it may be used in production designs with
caution

Table 1–2 shows the level of support offered by the RS Compiler to each
of the Altera device families.

Table 1–1. RS Compiler Release Information

Item Description

Version 4.1.0

Release Date April 2006

Ordering Codes IP-RSENC (Encoder)
IP-RSDEC (Decoder)

Product IDs 0039 0041 (Encoder)
0080 0041 (Decoder)

Vendor ID 6AF7

Table 1–2. Device Family Support (Part 1 of 2)

Device Family Support

Stratix® II Full

Stratix II GX Preliminary

Stratix GX Full

Stratix Full

Cyclone™ II Full

1–2 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

New in Version 4.1.0

New in Version
4.1.0

■ Maintenance release

Features ■ High-performance encoder/decoder for error detection and
correction

■ Fully parameterized RS function, including:
● Number of bits per symbol
● Number of symbols per codeword
● Number of check symbols per codeword
● Field polynomial
● First root of generator polynomial
● Space between roots in generator polynomial

■ Decoder features:
● Variable option
● Erasures-supporting option

■ Encoder features variable architectures
■ Support for shortened codewords
■ Conforms to Consultative Committee for Space Data Systems (CCSDS)

Recommendations for Telemetry Channel Coding, May 1999
■ Easy-to-use IP Toolbench interface:

● Generates parameterized encoder or decoder
● Generates customized testbench and customized Tcl script

■ DSP Builder ready
■ IP functional simulation models for use in Altera-supported VHDL

and Verilog HDL simulators
■ Support for OpenCore Plus evaluation

General
Description

The Altera RS Compiler comprises a fully parameterizable encoder and
decoder for forward error correction applications. RS codes are widely
used for error detection and correction in a wide range of DSP
applications for storage, retrieval, and transmission of data. The RS
Compiler has the following options:

Cyclone Full

HardCopy® II Preliminary

HardCopy Stratix Full

Table 1–2. Device Family Support (Part 2 of 2)

Device Family Support

Altera Corporation Compiler Version 4.1.0 1–3
April 2006 Reed-Solomon Compiler User Guide

About This Compiler

■ Erasures-supporting option—the RS decoder can correct symbol
errors up to the number of check symbols, if you give the location of
the errors to the decoder (see “Erasures” on page 3–2).

■ Variable encoding or decoding—you can vary the total number of
symbols per codeword and the number of check symbols, in real
time, from their minimum allowable values up to their selected
values, when you are encoding or decoding.

■ Error symbol output—the RS decoder finds the error values and
location and adds these values in the Galois field to the input value.

■ Bit error output—either split count or full count

OpenCore Plus Evaluation

With Altera’s free OpenCore Plus evaluation feature, you can perform the
following actions:

■ Simulate the behavior of a megafunction (Altera MegaCore function
or AMPPSM megafunction) within your system

■ Verify the functionality of your design, as well as evaluate its size
and speed quickly and easily

■ Generate time-limited device programming files for designs that
include megafunctions

■ Program a device and verify your design in hardware

You only need to purchase a license for the megafunction when you are
completely satisfied with its functionality and performance, and want to
take your design to production.

f For more information on OpenCore Plus hardware evaluation using the
RS Compiler, see “OpenCore Plus Time-Out Behavior” on page 3–9 and
AN 320: OpenCore Plus Evaluation of Megafunctions.

DSP Builder Support

Altera’s DSP Builder shortens DSP design cycles by helping you create
the hardware representation of a DSP design in an algorithm-friendly
development environment.

You can combine existing MATLAB/Simulink blocks with Altera DSP
Builder/MegaCore blocks to verify system level specifications and
generate hardware implementations. After installing this MegaCore
function, a Simulink symbol of this MegaCore function appears in the
Simulink library browser in the MegaCore library from the Altera DSP
Builder blockset. To use this MegaCore function with DSP Builder, you
require DSP Builder v6.0 or higher and the Quartus® II software version
6.0 or higher.

1–4 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

Performance

1 When using the RS MegaCore function in Simulink with DSP
Builder, the IO ports of the RS DSP Builder block are represented
as unsigned integer data type. Therefore, when you want to
connect a signal with a non-unsigned integer data type to the RS
DSP Builder block IO port, a DSP Builder casting block such as
the “Bus Conversion Block” must be inserted to convert the
signal to unsigned integer.

f For more information on DSP Builder, refer to the DSP Builder User Guide
and the DSP Builder Reference Manual.

Performance Table 1–3 shows the typical performance using the Quartus II software
version 6.0 for the following devices:

■ Stratix II EP2S15F484C3
■ Cyclone II EP2C5T144C6

The throughput in megabits per second (Mbps) is derived from the
formulas in Table 3–9 on page 3–15 and maximum frequency at which the
design can operate.

Overall resource requirements vary widely depending on the parameter
values used. The number of logic elements (LEs) required to implement
the function is linearly dependent on both the field size and the number

Table 1–3. Performance

Device Options Keysize m N check LEs or
ALUTs (1)

Memory
(M4K)

fMAX
(MHz)

Throughput
(Mbps)

Stratix II None half 8 204 16 1,476 7 250 2,000

Variable half 8 204 16 1,644 7 241 1,933

Erasures half 8 204 16 2,719 7 224 1,792

Variable and erasures half 8 204 16 2,912 8 221 1,773

None half 8 255 32 2,578 7 221 1,393

Cyclone II None half 8 204 16 1,828 7 184 1,475

Variable half 8 204 16 2,013 7 179 1,435

Erasures half 8 204 16 3,339 7 164 1,315

Variable and erasures half 8 204 16 3,643 8 150 1,201

None half 8 255 32 3,237 7 159 1,004

Notes to Table 1–3:
(1) Stratix II devices use adaptive look-up tables (ALUTs).

Altera Corporation Compiler Version 4.1.0 1–5
April 2006 Reed-Solomon Compiler User Guide

About This Compiler

of check symbols. More memory is required for 9, 10, 11, or 12 bits per
symbol. Specifying the erasures-supporting and the variable option also
increases the memory required.

1–6 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

Performance

Altera Corporation Compiler Version 4.1.0 2–1
April 2006

2. Getting Started

Design Flow To evaluate the Reed-Solomon (RS) Compiler using the OpenCore® Plus
feature, include these steps in your design flow:

1. Obtain and install the RS Compiler.

f For installation instructions, refer to the Reed-Solomon Compiler v4.1.0
Release Notes.

Figure 2–1 shows the directory structure after you install the RS
Compiler, where <path> is the installation directory.

Figure 2–1. Directory Structure

2. Create a custom variation of the RS Compiler using IP Toolbench.

1 IP Toolbench is a toolbar from which you quickly and easily
view documentation, specify parameters, and generate all
of the files necessary for integrating the parameterized
MegaCore® function into your design.

3. Implement the rest of your design using the design entry method of
your choice.

<path>

 common
 Contains the common MegaCore function files.

 ip_toolbench
 Contains the common IP Toolbench files.

 reed_solomon-v4.1.0
 Contains the Reed-Solomon Compiler files and documentation.

 doc
 Contains the documentation for the MegaCore function.

 lib
 Contains encrypted lower-level design files. After installing the compiler,
 you should set a user library in the Quartus II software that points to this directory.
 This library allows you to access all the necessary MegaCore files.

 ip_toolbench
 Contains the IP Toolbench files.

2–2 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

RS Compiler Walkthrough

4. Use the IP Toolbench-generated IP functional simulation model to
verify the operation of your design.

f For more information on IP functional simulation models, see the
Simulating Altera in Third-Party Simulation Tools chapter in volume 3 of
the Quartus II Handbook.

5. Use the Quartus II software to compile your design.

1 You can also generate an OpenCore Plus time-limited
programming file, which you can use to verify the
operation of your design in hardware.

6. Purchase a license for the RS Compiler.

Once you have purchased a license for the RS Compiler, the design flow
involves the following additional steps:

1. Set up licensing.

2. Generate a programming file for the Altera® device(s) on your
board.

3. Program the Altera device(s) with the completed design.

4. Perform design verification.

RS Compiler
Walkthrough

This walkthrough explains how to create an RS MegaCore function using
the Altera RS Compiler IP Toolbench and the Quartus II software on a PC.
As you go through the wizard, each step is described in detail. When you
are finished generating a custom variation of the RS MegaCore function,
you can incorporate it into your overall project.

1 IP Toolbench only allows you to select legal combinations of
parameters, and warns you of any invalid configurations.

This walkthrough involves the following steps:

■ “Create a New Quartus II Project” on page 2–3
■ “Launch IP Toolbench” on page 2–4
■ “Step 1: Parameterize” on page 2–5
■ “Step 2: Set Up Simulation” on page 2–8
■ “Step 3: Generate” on page 2–10

Altera Corporation Compiler Version 4.1.0 2–3
April 2006 Reed-Solomon Compiler User Guide

Getting Started

Create a New Quartus II Project

You need to create a new Quartus II project with the New Project Wizard,
which specifies the working directory for the project, assigns the project
name, and designates the name of the top-level design entity. To create a
new project follow these steps:

1. Choose Programs > Altera > Quartus II <version> (Windows Start
menu) to run the Quartus II software. You can also use the
Quartus II Web Edition software.

2. Choose New Project Wizard (File menu).

3. Click Next in the New Project Wizard Introduction (the
introduction does not display if you turned it off previously).

4. In the New Project Wizard: Directory, Name, Top-Level Entity
page, enter the following information:

a. Specify the working directory for your project. For example,
this walkthrough uses the c:\altera\temp\rs_project directory.

b. Specify the name of the project. This walkthrough uses project
for the project name.

1 The Quartus II software automatically specifies a top-level
design entity that has the same name as the project.

5. Click Next to close this page and display the New Project Wizard:
Add Files page.

1 When you specify a directory that does not already exist, a
message asks if the specified directory should be created.
Click Yes to create the directory.

6. For Linux and Solaris operating systems, add user libraries by
following these steps on the New Project Wizard: Add Files page:

a. Click User Library Pathnames.

b. Type <path>\reed-solomon-4.1.0\lib\ into the Library
name box, where <path> is the directory in which you installed
the Reed-Solomon Compiler.

c. Click Add to add the path to the Quartus II project.

d. Click OK to save the library path in the project.

2–4 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

RS Compiler Walkthrough

7. Click Next to close this page and display the New Project Wizard:
Family & Device Settings page.

8. On the New Project Wizard: Family & Device Settings page,
choose the target device family in the Family list.

9. The remaining pages in the New Project Wizard are optional. Click
Finish to complete the Quartus II project.

You have finished creating your new Quartus II project.

Launch IP Toolbench

To launch IP Toolbench in the Quartus II software, follow these steps:

1. Start the MegaWizard® Plug-In Manager by choosing the
MegaWizard Plug-In Manager command (Tools menu). The
MegaWizard Plug-In Manager dialog box is displayed.

1 Refer to the Quartus II Help for more information on how
to use the MegaWizard Plug-In Manager.

2. Specify that you want to create a new custom megafunction
variation and click Next.

3. Expand the DSP > Error Detection/Correction directory then click
Reed-Solomon Compiler v4.0.1.

4. Choose the output file type for your design; the wizard supports
VHDL and Verilog HDL.

5. The MegaWizard Plug-In Manager shows the project path that you
specified in the New Project Wizard. Append a variation name for
the MegaCore function output files <project path>\<variation name>.
Figure 2–2 shows the wizard after you have made these settings.

Altera Corporation Compiler Version 4.1.0 2–5
April 2006 Reed-Solomon Compiler User Guide

Getting Started

Figure 2–2. Select the Megafunction

6. Click Next to launch IP Toolbench.

Step 1: Parameterize

To parameterize your MegaCore function, follow these steps:

f For more information on the parameters, refer to “Parameters” on
page 3–9.

2–6 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

RS Compiler Walkthrough

1. Click Step 1: Parameterize in IP Toolbench (see Figure 2–3).

Figure 2–3. IP Toolbench—Parameterize

2. Select Encoder or Decoder (see Figure 2–4).

Figure 2–4. Select the Encoder or Decoder

3. For the encoder you can turn on the Variable option.

Altera Corporation Compiler Version 4.1.0 2–7
April 2006 Reed-Solomon Compiler User Guide

Getting Started

f For more information on the variable option, see “Variable Encoding &
Decoding” on page 3–3.

4. For the decoder:

a. You can turn on the Erasures-supporting or Variable options.

b. Select Full or Half keysize.

c. You can turn on the Error Symbol and/or Bit Error outputs.
For the bit error output, select Split Count or Full Count.

5. Click Next.

6. Choose the parameters that define the specific RS codeword that
you wish to implement (see Figure 2–5). You can enter the
parameters one by one, or click DVB Standard to use digital video
broadcast (DVB) standard values, or CCSDS Standard to use the
CCSDS standard values.

Figure 2–5. Choose the Parameters

7. Click Next.

2–8 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

RS Compiler Walkthrough

8. For a decoder throughput calculation, enter the frequency in MHz,
select the desired units, and click Calculate (see Figure 2–6).

Figure 2–6. Throughput Calculator

9. Click Finish.

To view the symbol, click Display Symbol in IP Toolbench.

Step 2: Set Up Simulation

An IP functional simulation model is a cycle-accurate VHDL or Verilog
HDL model file produced by the Quartus II software. The model allows
for fast functional simulation of IP using industry-standard VHDL and
Verilog HDL simulators.

c Only use these simulation model output files for simulation
purposes and expressly not for synthesis or any other purposes.
Using these models for synthesis creates a nonfunctional design.

To generate an IP functional simulation model for your MegaCore
function, follow these steps:

Altera Corporation Compiler Version 4.1.0 2–9
April 2006 Reed-Solomon Compiler User Guide

Getting Started

1. Click Step 2: Set Up Simulation in IP Toolbench (see Figure 2–7).

Figure 2–7. Set Up Simulation

2. Turn on Generate Simulation Model (see Figure 2–8).

Figure 2–8. Generate Simulation Model

2–10 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

RS Compiler Walkthrough

3. Choose the language in the Language list.

1 Choose the same language as your design.

4. Click OK.

Step 3: Generate

To generate your MegaCore function, follow these steps:

1. Click Step 3: Generate in IP Toolbench (see Figure 2–9).

Figure 2–9. IP Toolbench—Generate

Figure 2–10 shows the generation report.

Altera Corporation Compiler Version 4.1.0 2–11
April 2006 Reed-Solomon Compiler User Guide

Getting Started

Figure 2–10. Generation Report

Table 2–1 describes the generated files and other files that may be in your
project directory. The names and types of files specified in the IP
Toolbench report vary based on whether you created your design with
VHDL or Verilog HDL

Table 2–1. Generated Files (Part 1 of 2) Note (1)

Filename Description

<variation name>.bsf Quartus II symbol file for the MegaCore function variation.
You can use this file in the Quartus II block diagram editor.

<variation name>.cmp A VHDL component declaration file for the MegaCore
function variation. Add the contents of this file to any VHDL
architecture that instantiates the MegaCore function.

<variation name>.html MegaCore function report file.

<variation name>.vo or .vho VHDL or Verilog HDL IP functional simulation model.

2–12 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

Simulate the Design

2. After you review the generation report, click Exit to close IP
Toolbench.

You can now integrate your custom variation into your design and
simulate and compile.

Simulate the
Design

You can simulate using the IP Toolbench-generated IP functional
simulation models. IP Toolbench also generates a customized VHDL or
Verilog HDL testbench for your encoder or decoder in your project
directory.

To use the IP functional simulation model and the customized testbench
with the ModelSim simulator, follow these steps:

1. Start the ModelSim-Altera simulator.

2. Change directory to your Quartus II project directory by typing cd
<directory name>.

3. To simulate with an IP functional simulation model simulation, type
the following command:

source <variation name>_vsim_script.tclr

The Tcl script performs the following operations:

<variation name>.vhd, or .v A MegaCore function variation file, which defines a VHDL
or Verilog HDL top-level description of the custom
MegaCore function. Instantiate the entity defined by this
file inside of your design. Include this file when compiling
your design in the Quartus II software.

<variation name>_bb.v Verilog HDL black-box file for the MegaCore function
variation. Use this file when using a third-party EDA tool to
synthesize your design.

<variation name>_testbench.vhd The testbench.

<variation name>_vsim_script.tcl Starts the MegaCore function simulation in the ModelSim
simulator.

block_period_stim.txt The testbench stimuli, which change for every block.

rs_encoded_data.txt Contains the encoded test data.

Notes to Table 2–1:
(1) <variation name> is the variation name.

Table 2–1. Generated Files (Part 2 of 2) Note (1)

Filename Description

Altera Corporation Compiler Version 4.1.0 2–13
April 2006 Reed-Solomon Compiler User Guide

Getting Started

■ Creates a working library rs_work
■ Compiles your top-level design, the testbench support files, and the

testbench with your parameters into rs_work
■ Executes vsim and opens a wave window with the testbench signals

The testbench generates summary report files, summary_input.txt (for
the decoder only) and summary_output.txt, which detail the simulation
results.

Compile the
Design

You can use the Quartus II software to compile your design. Refer to
Quartus II Help for instructions on performing compilation.

Program a
Device

After you have compiled your design, program your targeted Altera
device and verify your design in hardware.

With Altera's free OpenCore Plus evaluation feature, you can evaluate an
RS MegaCore function before you purchase a license. OpenCore Plus
evaluation allows you to generate an IP functional simulation model and
produce a time-limited programming file.

f For more information on IP functional simulation models, see the
Simulating Altera in Third-Party Simulation Tools chapter in volume 3 of
the Quartus II Handbook.

You can simulate an RS MegaCore function in your design and perform a
time-limited evaluation of your design in hardware.

f For more information on OpenCore Plus hardware evaluation using the
RS Compiler, see “OpenCore Plus Evaluation” on page 1–3, “OpenCore
Plus Time-Out Behavior” on page 3–9, and AN 320: OpenCore Plus
Evaluation of Megafunctions.

Set Up Licensing You need to purchase a license for the MegaCore function only when you
are completely satisfied with its functionality and performance and want
to take your design to production.

After you purchase a license for RS Compiler, you can request a license
file from the Altera web site at www.altera.com/licensing and install it on
your computer. When you request a license file, Altera emails you a
license.dat file. If you do not have Internet access, contact your local
Altera representative.

2–14 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

Set Up Licensing

Altera Corporation Compiler Version 4.1.0 3–1
April 2006

3. Specifications

Functional
Description

To use Reed-Solomon (RS) codes, a data stream is first broken into a series
of codewords. Each codeword consists of several information symbols
followed by several check symbols (also known as parity symbols or
redundant symbols). Symbols can contain an arbitrary number of bits. In
an error correction system, the encoder adds check symbols to the data
stream prior to its transmission over a communications channel. When
the data is received, the decoder checks for and corrects any errors (see
Figure 3–1).

Figure 3–1. RS Codeword Example

RS codes are described as (N,K), where N is the total number of symbols
per codeword and K is the number of information symbols. R is the
number of check symbols (N – K). Errors are defined on a symbol basis
(i.e., any number of bit errors within a symbol is considered as only one
error).

RS codes are based on finite-field (i.e., Galois field) arithmetic. Any
arithmetic operation (i.e., addition, subtraction, multiplication, and
division) on a field element gives a result that is an element of the field.
The size of the Galois field is determined by the number of bits per
symbol; specifically, the field has 2m elements, where m is the number of
bits per symbol. A specific Galois field is defined by a polynomial, which
is user-defined for the RS Compiler. IP Toolbench lets you select only
valid field polynomials.

The maximum number of symbols in a codeword is limited by the size of
the finite field to 2m – 1. For example, a code based on 10-bit symbols can
have up to 1,023 symbols per codeword. The RS Compiler supports
shortened codewords.

0010 0110 1010 0011 0111 1011

Information symbols, which
contain the original data.

Check symbols, added by
the RS encoder before
transmission over a
communications channel.

Symbol Codeword

4 to 10 bits
per symbol.

3–2 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

Functional Description

The following equation represents the generator polynomial of the code:

where:

i0 is the first root of the generator polynomial
a is the rootspace
R is the number of check symbols
α is a root of the polynomial.

For example, for the following information:

a is a root of the binary primitive polynomial x8 + x7 + x2 + x + 1
i0 = 120

You can calculate the following parameters:

■ R – 1 = 3
■ a = 1 (α is to the power 1 times i)

The field polynomial can be obtained by replacing x with 2, thus,
28 + 27 + 22 +2 + 1 = 391

Erasures

In normal operation the RS decoder detects and corrects symbol errors.

The number of symbol errors that can be corrected, C, depends on the
number of check symbols, R and is given by C ≤ R/2.

If the location of the symbol errors is marked as an erasure, the RS
decoder can correct twice as many errors, i.e., C ≤ R.

1 Erasures are symbol errors with a known location.

 R – 1

g(x) = ∏ (x – αa.i + i
0)

 i = 0

 3

g(x) = ∏ (x – αi + i
0)

 i = 0

Altera Corporation Compiler Version 4.1.0 3–3
April 2006 Reed-Solomon Compiler User Guide

Specifications

External circuitry identifies which symbols have errors and passes this
information to the decoder using the eras_sym signal. The eras_sym
input indicates an erasure (when the erasures-supporting decoder option
is selected).

The RS decoder can work with a mixture of erasures and errors.

A codeword is correctly decoded if (2e + E) ≤ R

where:

e = errors with unknown locations
E = erasures
R = number of check symbols.

For example, with ten check symbols the decoder can correct ten erasures,
or five symbol errors, or four erasures and three symbol errors.

f If the number of erasures marked approaches the number of check
symbols, the ability to detect errors without correction (decfail
asserted) diminishes (see Table 3–1 on page 3–7).

Shortened Codewords

A shortened codeword contains fewer symbols than the maximum value
of N, which is 2m –1. A shortened codeword is mathematically equivalent
to a maximum-length code with the extra data symbols at the start of the
codeword set to 0.

For example, (204,188) is a shortened codeword of (255,239). Both of these
codewords use the same number of check symbols, i.e., 16.

To use shortened codewords with the Altera RS encoder and decoder, you
use IP Toolbench to set the codeword length to the correct value, in the
example, 204.

Variable Encoding & Decoding

The encoder and decoder allow variable encoding and decoding
respectively—you can change the number of symbols per codeword (N)
using sink_eop, but not the number of check symbols while decoding.

1 You cannot change the length of the codeword, if you turn on the
erasure-supporting option.

3–4 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

Functional Description

In addition, with the variable option, you can vary the number of symbols
per codeword (using the numn signal) and the number of check symbols
(using the numcheck signal), in real time, from their minimum allowable
values up to their selected values, even with the erasures-supporting
option turned on. Table 3–7 on page 3–13 shows the variable option
signals.

Interfaces

The RS encoder and decoder use the Atlantic™ interface for data input
and output. The input is an Atlantic master sink and the output is an
Atlantic slave source. The Atlantic interface threshold is set to 1. The
Atlantic interfaces allow for flow control.

f For more information on the Atlantic interface, refer to the Atlantic
Interface Specification.

Figure 3–2 shows the RS encoder and decoder Atlantic interfaces.

Figure 3–2. Atlantic Interface

RS Encoder

The sink_sop signal starts a codeword; sink_eop signals its
termination. An asserted sink_val indicates valid data.

1 Only assert sink_val one clock cycle after the encoder asserts
sink_ena.

By de-asserting sink_ena, the encoder signals that it cannot sink more
incoming symbols for a number of symbols after eop is signalled at the
input. During this time it is generating the check symbols for the current

Atlantic Interface

Slave (Source)

source_val

source_ena

source_eop

decbit

source_sop

User Module
Master (Sink)

ena

val

sop

eop

dat

Atlantic Interface

User Module
Slave (Source)

ena

val

sop

eop

dat

Master (Sink)

RS Encoder or Decoder

sink_val

sink_ena

sink_eop

rr/eras_sym

sink_sop

Altera Corporation Compiler Version 4.1.0 3–5
April 2006 Reed-Solomon Compiler User Guide

Specifications

codeword. Figure 3–3 shows the operation of the RS encoder. The
example shows a codeword with eight information symbols and five
check symbols.

Figure 3–3. Encoder Timing

The numcheck input is latched inside the encoder when sink_sop is
asserted.

You can change the number of symbols in a codeword at run-time
without resetting the encoder. You must make the changes between
complete codewords; you cannot change numcheck during encoding.
Figure 3–4 shows variable encoding.

 clk

sink_ena

sink_val

sink_sop

sink_eop

rsin[8:1]

source_ena

source_val

source_sop

source_eop

rsout[8:1]

01 02 03 04 05 06 07 08 09 09 10 11 12 13 14 15 16

01 02 03 04 05 06 07 08 P1 P2 P3 P4 P5 09 10 12 11 12 13 14 15 16 P6 P7 P8 P9

3–6 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

Functional Description

Figure 3–4. Variable Encoding

RS Decoder

The decoder implements an Atlantic-based pipelined three-codeword-
depth architecture. However, if the parameters are in the continuous
range (see Table 3–3), the decoder shows continuous behavior and can
accept a new symbol every clock cycle.

1 The new architecture replaces the previous discrete, streaming,
and continuous architectures (see “Information for Version 3.6.0
Users” on page C–1).

The decoder is self-flushing—it processes and delivers a codeword
without needing a new codeword to be fed in. Therefore, latency between
the input and output does not depend on the availability of input data.
The throughput latency is approximately three codewords

The reset is active high and can be asserted asynchronously. However, it
has to be de-asserted synchronously with clk.

The RS decoder always tries to detect and correct errors in the codeword.
However, as the number of errors increases, the decoder gets to a stage
where it can no longer correct but only detect errors, at which point the

clk

sink_ena

sink_val

sink_sop

sink_eop

rsin[8:1]

source_ena

source_val

source_sop

source_eop

rsout[8:1]

numcheck[4:1]

01 02 03 04 05 06 07 08 09 10 11 12

01 02 03 04 05 06 07 08 P1 P2 P3 P4 P5 09 10 11 12

05 05

Altera Corporation Compiler Version 4.1.0 3–7
April 2006 Reed-Solomon Compiler User Guide

Specifications

decoder asserts the decfail signal. As the number of errors increases
still further, the results become unpredictable. Table 3–1 shows how the
decoder corrects and detects errors depending on R.

The RS decoder observes Atlantic interface standard for input and output
data. One clock cycle after the decoder asserts sink_ena, you can assert
sink_val. The decoder accepts the data at rsin as valid data. The
codeword is started with sink_sop. The numcheck and numn signals
are latched to sink_sop. The codeword is finished when sink_eop is
asserted. If sink_ena is de-asserted, from one clock cycle onwards the
decoder cannot process any more data until sink_ena is asserted again.

At the output the operation is identical. If you assert source_ena, the
decoder provides valid data on rsout and asserts source_val. Also, it
indicates the start and end of the codeword with source_sop and
source_eop respectively.

Table 3–1. Decoder Detection and Correction

Number of Errors Decoder Behavior

Errors ≤ R/2 Decoder detects and corrects errors.

R/2 ≤ errors ≤ R Decoder asserts decfail and can only detect
errors. (1)

Errors > R Unpredictable results.

Note to Table 3–1:
(1) The decoder may fail to assert decfail, for low values of R (4,5, or 6), or when

using erasures and the differences between the number of erasures and R is small
(4, 5 or 6).

3–8 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

Functional Description

Figure 3–5 shows the operation of the RS decoder.

Figure 3–5. Decoder Timing

The decoder has the following optional outputs, which you turn on in IP
Toolbench:

■ Error symbol
■ Bit error count

The error symbol output, rserr is the Galois field error correction value.
The RS decoder finds the error values and location and adds these values
in the Galois field to the input value. Galois field addition and subtraction
is the same operation. An XOR operation performs this operation between
bits of the two values. Figure 3–6 shows the error symbol output.

Figure 3–6. Error Symbol Output

clk

sink_ena

sink_val

sink_sop

sink_eop

rsin[8:1]

source_ena

source_val

source_sop

source_eop

rsout[8:1]

numcheck[4:1]

numn[4:1]

01 02 03 04 05 06 07 08 P1 P2 P3 P4 P5 09 10 11 12 13

01 02 03 04 05 06 07 08 P1 P2 P3 P4 P5 12

05 05

13 13

Memory
& Control

Syndrome
Calculationrsin rserr

rsout

Solve Key
Equation

Chien Search
& Forney's
Algorithm

Altera Corporation Compiler Version 4.1.0 3–9
April 2006 Reed-Solomon Compiler User Guide

Specifications

The decoder can provide the bit error count found in the correction
process. The bit error count has the following options:

■ Full count—connects the output num_err_bit
■ Split count—connects num_err_bit0 and num_err_bit1

f For information on these outputs, see Table 3–8 on page 3–14.

OpenCore Plus Time-Out Behavior

OpenCore Plus hardware evaluation can support the following two
modes of operation:

■ Untethered—the design runs for a limited time.
■ Tethered—requires a connection between your board and the host

computer. If tethered mode is supported by all megafunctions in a
design, the device can operate for a longer time or indefinitely.

All megafunctions in a device time out simultaneously when the most
restrictive evaluation time is reached. If there is more than one
megafunction in a design, a specific megafunction’s time-out behavior
may be masked by the time-out behavior of the other megafunctions.

1 For MegaCore functions, the untethered timeout is 1 hour; the
tethered timeout value is indefinite.

Your design stops working after the hardware evaluation time expires
and the data output rsout remains low.

f For more information on OpenCore Plus hardware evaluation, see
“OpenCore Plus Evaluation” on page 1–3 and AN 320: OpenCore Plus
Evaluation of Megafunctions.

Parameters Table 3–2 shows the implementation parameters.

Table 3–2. Implementation Parameters (Part 1 of 2)

Parameter Value Description

Function Encoder or decoder. Specifies an encoder or a decoder (see
“Functional Description” on page 3–1).

Variable option On or off. Specifies the variable option (see “Variable
Encoding & Decoding” on page 3–3).

3–10 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

Parameters

Table 3–3 shows the RS codeword parameters.

Erasures-supporting
option

On or off. Specifies the erasures-supporting option.
Erasures-supporting substantially increases
the logic resources used (see “Erasures” on
page 3–2).

Error symbol output
(1)

On or off. Specifies the error symbol output (see “RS
Decoder” on page 3–6 and Table 3–8 on
page 3–14).

Bit error output (1) On or off. Specifies the bit error output as either split or
full count (see “RS Decoder” on page 3–6 and
Table 3–8 on page 3–14).

Keysize (1) Half or full. The keysize parameter allows you to trade off
the amount of logic resources against the
supported throughput. Full has twice as many
Galois field multipliers as half. A full decoder
uses more logic and is probably slightly slower
in frequency, but supports a higher throughput.
If both full and half give you the required
throughput for your parameters, always select
half.

Note to Table 3–2:
(1) This parameter applies to the decoder only.

Table 3–2. Implementation Parameters (Part 2 of 2)

Parameter Value Description

Table 3–3. RS Codeword Parameters (Part 1 of 2)

Parameter Range Range
(Continuous) Description

Number of bits per symbol
(m)

3 to 12 6 to 10 Specifies the number of bits per
symbol.

Number of symbols per
codeword (N)

5 to (2m – 1) 7(R + 1)
to 2m – 1

Specifies the total number of symbols
per codeword.

Number of check symbols
per codeword (R)

2 to min(128, N – 1) (1) 4 to N/7 – 1 Specifies the number of check
symbols per codeword.

Field polynomial Any valid polynomial (2) Specifies the primitive polynomial
defining the Galois field.

First root of generator
polynomial (i0)

0 to (2m – 2) Specifies the first root of the generator
polynomial.

Altera Corporation Compiler Version 4.1.0 3–11
April 2006 Reed-Solomon Compiler User Guide

Specifications

Signals Table 3–4 shows the global signals.

Root spacing in generator
polynomial (a)

Any valid root space (2) Specifies the space between roots in
the generator polynomial.

Notes to Table 3–3:
(1) Minimum value 4 with half keysize and no erasures-supporting option.
(2) IP Toolbench allows you to select only legal values. For m > 8, not all legal values of the field polynomials and

rootspace are present in IP Toolbench. If you cannot find your intended field polynomial or rootspace in the IP
Toolbench list, contact Altera MySupport.

Table 3–3. RS Codeword Parameters (Part 2 of 2)

Parameter Range Range
(Continuous) Description

Table 3–4. Global Signals

Name Description

clk clk is the main system clock. The whole MegaCore function operates on the rising edge of clk.

reset Reset. The entire decoder is asynchronously reset when reset is asserted high. The reset signal
is used to reset the entire system. The reset signal must be de-asserted synchronously with
respect to the rising edge of clk.

3–12 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

Signals

Table 3–5 shows the Atlantic master sink (data input) signals.

Table 3–5. Atlantic Master Sink Signals

Name Atlantic
Type Direction Description

sink_ena ena Output Data transfer enable signal. sink_ena is driven by the interface master
and controls the flow of data across the interface. sink_ena behaves as
a read enable from master to slave. When the slave observes sink_ena
asserted on the clk rising edge it drives, on the following clk rising edge,
the Atlantic data interface signals and asserts val, if data is available. The
master captures the data interface signals on the following clk rising
edge. If the slave is unable to provide new data, it de-asserts val for one
or more clock cycles until it is prepared to drive valid data interface signals.

sink_val val Input Data valid signal. sink_val indicates the validity of the data signals.
sink_val is updated on every clock edge where sink_ena is asserted.
sink_val and the dat bus hold their current value if sink_ena is de-
asserted. When sink_val is asserted, the Atlantic data interface signals
are valid. When sink_val is de-asserted, the Atlantic data interface
signals are invalid and must be disregarded. To determine whether new
data has been received, the master qualifies the sink_val signal with the
previous state of the sink_ena signal.

sink_sop sop Input Start of packet (codeword) signal. sop delineates the codeword
boundaries on the rsin bus. When sink_sop is high, the start of the
packet is present on the rsin bus. sink_sop is asserted on the first
transfer of every codeword.

sink_eop eop Input End of packet (codeword) signal. sink_eop delineates the packet
boundaries on the rsin bus. When sink_eop is high, the end of the
packet is present on the dat bus. sink_eop is asserted on the last
transfer of every packet.

rsin[m:1] dat Input Data input with Galois field value.

eras_sym dat Input When asserted, the symbol in rsin[] is marked as an erasure. Valid only
for the decoder with erasures-supporting option.

Altera Corporation Compiler Version 4.1.0 3–13
April 2006 Reed-Solomon Compiler User Guide

Specifications

Table 3–6 shows the Atlantic slave source (data output) signals.

Table 3–7 shows the configuration signals.

Table 3–6. Slave Source Signals

Name Atlantic
Type Direction Description

source_ena ena Input Data transfer enable signal. source_ena is driven by the interface
master and used to control the flow of data across the interface. ena
behaves as a read enable from master to slave. When the slave
observes source_ena asserted on the clk rising edge it drives, on
the following clk rising edge, the Atlantic data interface signals and
asserts source_val. The master captures the data interface signals
on the following clk rising edge. If the slave is unable to provide new
data, it de-asserts source_val for one or more clock cycles until it is
prepared to drive valid data interface signals.

source_val val Output Data valid signal. source_val is asserted high for one clock cycle,
whenever there is a valid output on rsout; it is deasserted when there
is no valid output on rsout.

source_sop sop Output Start of packet (codeword) signal.

source_eop eop Output End of packet (codeword) signal.

rsout dat Output The rsout signal contains decoded output when source_val is
asserted. The corrected symbols are in the same order that they were
entered.

rserr dat Output Error correction value (decoder only, optional), see “RS Decoder” on
page 3–6.

Table 3–7. Configuration Signals

Name Description

bypass A one-bit signal that sets if the codewords are bypassed or not (decoder only). The decoder
continuously samples bypass.

numcheck Sets the variable number of check symbols up to a maximum value set by the parameter R
(variable option only). The decoder samples numcheck only when sink_sop is asserted.

numn Variable value of N. Can be any value from the minimum allowable value of N up to the selected
value of N (variable and erasures-supporting option only). The decoder samples numn only
when sink_sop is asserted.

3–14 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

MegaCore Verification

Table 3–8 shows the status signals (decoder only).

MegaCore
Verification

The MegaCore verification includes an automated regression test suite,
which is described in the following paragraphs.

Tcl scripts drive the simulation at RTL. In a testbench that includes an RS
encoder, a channel, and an RS decoder, data is randomly generated and
fed to the RS encoder. In the channel, some errors are introduced at
various locations of the RS codeword. An account of those errors is kept.
The testbench then receives the data decoded by the RS decoder and
compares it with the originally transmitted data. The error report and
three flag signals are generated: failure to correct; misleading decfail;
and failure to detect. The first two flags indicate a misbehavior of the
MegaCore function—hence a bug. The third signal tracks a condition that
happens with a low number of check symbols and when the number of
erasures comes close to the number of check symbols.

The test script defines sets of tests that cover a comprehensive set of
parameters on RTL VHDL and Verilog HDL simulation. Then synthesis
is carried out, and simulation using post-synthesis vital VHDL and
Verilog HDL netlist is performed.

Throughput
Calculator

The IP Toolbench throughput calculator (decoder only) uses the
following equation:

Throughput in megasymbols per second = N × frequency (MHz)/NC

Table 3–8. Status Signals

Name Description

decfail Indicates non-correctable number of errors. Valid when source_sop is asserted. Atlantic
type err.

num_err_sym Number of symbols errors. Valid when source_sop is asserted.

num_err_bit Number of bits errors corrected in the codeword. Valid when source_sop is asserted.
Connected only when bit error (full count) option is turned on, see “RS Decoder” on
page 3–6.

num_err_bit0 Number of bit errors for the corrections from bit 1 to bit 0. The latest is the correct bit. Valid
when sop_source is asserted. The decoder presents these values at the next
source_sop assertion (i.e., at the next codeword). Connected only when bit error (split
count) option is turned on.

num_err_bit1 Number of bit errors for the corrections from bit 0 to bit 1. The latest is the correct bit. Valid
when sop_source is asserted. The decoder presents these values at the next
source_sop assertion (i.e., at the next codeword). Connected only when bit error (split
count) option is turned on.

Altera Corporation Compiler Version 4.1.0 3–15
April 2006 Reed-Solomon Compiler User Guide

Specifications

For Mbps, multiply by m, the number of bits per symbol.

Table 3–9 shows the value of NC.

Table 3–9. Calculate NC

Erasures Keysize NC

No Half Max (N, 10 × R + 4)

No Full Max (N, 7 × R + 5)

Yes Half Max (N, 10 × R + 6)

Yes Full Max (N, 8 × R + 4)

3–16 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

Throughput Calculator

Altera Corporation Compiler Version 4.1.0 A–1
April 2006

Appendix A. Using the RS
Encoder or Decoder in a CCSDS

System

Introduction The Reed-Solomon (RS) encoder or decoder MegaCore® functions work
in canonical base (otherwise known as conventional base). This base can
cause confusion when trying to implement the RS encoder or decoder
directly into a dual-base system, e.g., when working with the CCSDS
standard. To transfer from a canonical-base to a dual-base system, a
Berlekamp transform is used, which you will need to implement in logic.
Figure A–1 shows an example use of the Berlekamp transform.

Figure A–1. Using the Berlekamp Transform

Test Patterns If you are working with a dual-base system, e.g., CCSDS, and wish to
supply the RS encoder or decoder with some test patterns from the
dual-base system, follow these steps:

1. Apply the Berlekamp transform (dual to canonical) to the test
pattern.

2. Apply the test pattern to RS encoder or decoder.

3. Apply the Berlekamp transform (canonical to dual) to the encoder
output.

4. Check the test pattern.

f For more information on how to implement the transformation function,
see Annex B of the standard specification document CCSDS-101.0-B-5 at
www.ccsds.org.

RS Encoder
Berlekamp
Transform

(Canonical to Dual)

Pre-transform
(Dual to Canonical)

Post-transform
(Canonical to Dual)

Berlekamp
Transform

(Dual to Canonical)

Channel

RS Decoder

A–2 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

Test Patterns

Altera Corporation Compiler Version 4.1.0 B–1
April 2006

Appendix B. Implementing
Atlantic Slave Source Interface

Control

You must implement a finite state machine (FSM) to control your
Atlantic™ slave source interface that connects to the Reed-Solomon (RS)
master sink interface.

1 You need not implement an FSM if you have a fully continuous
system and you are not using output flow control.

Altera supplies a reference implementation in VHDL and Verilog HDL in
the stimulus and response block files for the encoder and decoder
functions (see “Stimulus & Response Block Files” on page B–4).

Figure B–1 shows the connectivity between your logic and the RS master
sink interface. The source control logic is implemented between the
stimulus and response block and the RS function at the testbench.

Figure B–1. Atlantic to RS Master Sink Interface

source_valdata_int

enable

data_source_int source_ena

source_eop

dataout

source_sop

Atlantic Interface

User Module
Slave Source

Source
Control
Logic

ena

val

sop

eop

dat

Master Sink

RS

sink_val

sink_ena

sink_eop

rsin

sink_sop

B–2 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

Figure B–2 shows the Atlantic slave source control implementation.

Figure B–2. Atlantic Slave Source Control Implementation

ena

ena

ena

ena_data_sourcing

dav_source_int

allow_val_assert

source_ena

Atlantic Slave Source

FSM

Atlantic Master Sink

to RSdata

val

ena

dav_source_int

to RS

ena_data_sourcing
allow_val_assert

ena

ena

ena_data_sourcing

data_int

data_shunt

Altera Corporation Compiler Version 4.1.0 B–3
April 2006 Reed-Solomon Compiler User Guide

Implementing Atlantic Slave Source Interface Control

The FSM monitors the source_ena and dav_source_int signals. The
source_ena signal comes from the RS’s sink_ena. The
dav_source_int signal is an internal signal that indicates that the
internal data (data_int) is valid. See also Figure B–4 on page B–4.

That FSM also controls ena_data_sourcing and
allow_val_assert.

The ena_data_sourcing signal enables or disables FSM operation and
all the logic prior to data_int and dav_source_int generation. The
ena_data_sourcing signal controls all the flip-flops in the data_int
data path for the shunt buffer and controls your logic prior to data_int.
When ena_data_sourcing is asserted, data_int and
dav_source_int must not change.

The allow_val_assert signal controls whether or not val can be
asserted one clock cycle after the master’s ena is asserted. If ena is
asserted, the RS function is ready to receive data. When sink_ena
remains de-asserted, the function cannot accept any more data.

Figure B–3 shows the state diagram for the FSM.

Figure B–3. State Diagram for the FSM that Controls the Atlantic Slave Source Interface Note (1)

Note to Figure B–3:
(1) Underlined signal names indicate logic NOT. For example, ena is NOT ena.

S0

S2

S1

S3
S0 = out_idle
S1 = out_idle
S2 = out_active
S3 = out_hold

Monitors:
dav = dav_source_int
ena = source_ena

Controls:
ena_data_sourcing
allow_val_assert

ena

ena

dav & ena

dav & ena

dav & ena

dav & ena

dav & ena

B–4 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

Stimulus & Response Block Files

Figure B–4 shows the FSM timing diagram.

Figure B–4. FSM and Logic Timing Diagram

Stimulus &
Response Block
Files

All this logic in VHDL and Verilog HDL is in the following stimulus and
response block files:

■ Bench_rs_enc_atl_ent.vhd
■ Bench_rs_enc_atl_arc_ben.vhd
■ Bench_rs_enc_atl.v
■ Bench_rs_dec_atl_ent.vhd
■ Bench_rs_dec_atl_arc_ben.vhd
■ Bench_rs_dec_atl.v

Search the files for the following comments in VHDL:

--| START ATLANTIC SOURCE CONTROL LOGIC
--| END ATLANTIC SOURCE CONTROL LOGIC

or in Verilog HDL:

--// START ATLANTIC SOURCE CONTROL LOGIC
--// END ATLANTIC SOURCE CONTROL LOGIC

You should connect the internal data to data_int, and provide an
internal signal dav_source_int. When dav_source_int is asserted,
the data in data_int is valid. Also, you must connect
ena_data_sourcing to all the enables of the flip-flops of the logic
behind data_int. When this signal is disabled, the throughput has to
stop from the source side because the RS cannot sink data for that time.

clk

reset

source_ena

source_val

data

dav_source_int

data_int

data_shunt

atl_buffer_state

ena_data_sourcing

allow_val_assert

01 02 03 04 05 06 07 08 09 0A 0B 0A0B

01 02 03 04 05 06 07 08 09 0A 0B0B

01 02 03 04 05 06 07 08 09 0A 0B0B

S0 S1 S2 S3 S2 S3 S1 S2 S1S2

Altera Corporation Compiler Version 4.1.0 B–5
April 2006 Reed-Solomon Compiler User Guide

Implementing Atlantic Slave Source Interface Control

The FSM gets to state S0 when the asynchronous reset is asserted. After
de-asserting reset it jumps to S1 (out_idle). It remains there until the
operation starts by asserting dav_source_int, which indicates the
presence of valid data at data_int. The FSM jumps to S2
(out_active) if source_ena is asserted (see Figure B–4). Data is now
delivered. After this point there are two options: either internal data is no
longer available (dav_source_int de-asserted) or the sink side of the
RS may signal it cannot sink any more data by de-asserting its sink_ena
(source_ena de-asserted) (see Figure B–4). The FSM enters S3
(out_hold). It leaves this state when source_ena is asserted again.
While the FSM is on hold ena_data_sourcing remains de-asserted.
While ena_data_sourcing remains de-asserted, neither data_int
nor dav_source_int change because the logic leading to them is
disabled by ena_data_sourcing.

B–6 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

Stimulus & Response Block Files

Altera Corporation Compiler Version 4.1.0 C–1
April 2006

Appendix C. Information for
Version 3.6.0 Users

The Reed-Solomon (RS) decoder version 3.6.0 had discrete, streaming,
and continuous architectures. The new RS decoder version 4.0.0
implements a single Atlantic-based pipelined three-codeword-depth
architecture with flow control.

Streaming decoder v3.6.0 users now get an enhanced (faster and smaller)
function. Replacing a discrete architecture v3.6.0 with a version 4.0.0
decoder incurs a small penalty in memory usage.

Unlike the streaming and continuous architectures in versions 3.6.0 and
earlier, this new decoder does not need new codewords to be fed in for
the codewords to be delivered by the decoder (see Figure C–1).

Figure C–1. Decoder Codewords

The previous streaming architecture interface signals have similar
mappings: the rdyin signal is like sink_ena; dsin is like sink_val;
outvalid is like source_val; and dsout is similar to source_ena.

1 The timing relationships for the two versions are not the same.

With the new single Atlantic-based pipelined three-codeword-depth
architecture with flow control, if source_ena remains asserted all the
time and the codeword parameter set is of a continuous decoder from
version 3.6.0, sink_ena never gets de-asserted. This arrangement allows

Architecture (v3.6.0)

Time

Architecture (v4.0.0)

1 2 3 4 5 6

1 2 3 4 5

Continuous Behavior
(v3.6.0 & v4.0.0)

1 2 3 4 5 6

2 31 4 5 6

1 2 3 4 5

1 2 3 4 5

Output

Input

C–2 Compiler Version 4.1.0 Altera Corporation
Reed-Solomon Compiler User Guide April 2006

continuous input of codewords to the v4.0.0 decoder. However, because
of the variable latency of the Berlekamp Massey block, there is a posibility
of small gaps where source_val is not asserted at the output. After a
few codewords, the latency eventually reaches the maximum latency of
the decoder, when a block that causes the maximum latency has passed
through. Afterwards, there are no more gaps or de-assertions in
source_val. The output timing is therefore data-dependent.

You can create a workaround module, effectively an Atlantic FIFO buffer
that sits on the output of the Reed-Solomon decoder so that the
combination of decoder and FIFO buffer has a fixed latency throughout
and therefore is continuous for output and input.

The length of this FIFO buffer depends on the desired delay and on
keysize. To delay the data up to 3 × N + 4 from sink_sop, to emulate the
former continuous decoder, you need a FIFO buffer with depth N. To
delay up to the maximum latency of the Berlekamp-Massey block, the
depth should be 3 × R for full keysize and 5 × R for half keysize. Where
R is the number of check symbols.

	Reed-Solomon Compiler
	Contents
	About This User Guide
	Revision History
	How to Contact Altera
	Typographic Conventions

	1. About This Compiler
	Release Information
	Device Family Support
	New in Version 4.1.0
	Features
	General Description
	OpenCore Plus Evaluation
	DSP Builder Support

	Performance

	2. Getting Started
	Design Flow
	RS Compiler Walkthrough
	Create a New Quartus II Project
	Launch IP Toolbench
	Step 1: Parameterize
	Step 2: Set Up Simulation
	Step 3: Generate

	Simulate the Design
	Compile the Design
	Program a Device
	Set Up Licensing

	3. Specifications
	Functional Description
	The field polynomial can be obtained by replacing x with 2, thus, 28 + 27 + 22 +2 + 1 = 391
	Erasures
	Shortened Codewords
	Variable Encoding & Decoding
	Interfaces
	RS Encoder
	RS Decoder
	Figure 3-5 shows the operation of the RS decoder.

	OpenCore Plus Time-Out Behavior

	Parameters
	Signals
	MegaCore Verification
	Throughput Calculator

	Appendix A. Using the RS Encoder or Decoder in a CCSDS System
	Introduction
	Test Patterns

	Appendix B. Implementing Atlantic Slave Source Interface Control
	Stimulus & Response Block Files

	Appendix C. Information for Version 3.6.0 Users

