
101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
www.altera.com

SerialLite

MegaCore Function User Guide

MegaCore Function Version: 1.0.0
Document Version: 1.0.0 rev. 1

Document Date: September 2004P25-10188-00

http://www.altera.com

Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

ii MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide Preliminary

UG-SERIALLT-1.0

Altera Corporation
Contents
About This User Guide ... v
Revision History .. v
How to Contact Altera .. v
Typographic Conventions .. v

Chapter 1. About This MegaCore Function
Release Information ... 1–1
Device Family Support ... 1–1
Features ... 1–2

OpenCore Plus Evaluation .. 1–3
Performance .. 1–4

Chapter 2. Getting Started
System Requirements .. 2–1
Design Flow .. 2–1
Download & Install the SerialLite MegaCore Function ... 2–2

Download the SerialLite MegaCore Function .. 2–2
Install the SerialLite MegaCore Function Files .. 2–3
Directory Structure ... 2–4

SerialLite MegaCore Function Walkthrough .. 2–4
Create a New Quartus II Project .. 2–5
Launch IP Toolbench ... 2–5
Step 1: Parameterize ... 2–7
Step 2: Set Up Simulation .. 2–12
Step 3: Generate .. 2–14

Simulate the Design ... 2–16
Compile the Design ... 2–16

Apply Constraints .. 2–17
Set Up Licensing .. 2–18

Append the License to Your license.dat File .. 2–19
Specify the License File in the Quartus II Software ... 2–19

Chapter 3. Specifications
Functional Description .. 3–1

OpenCore Plus Time-Out Behavior ... 3–1
Link Consistency .. 3–3
Interface Overview ... 3–4
Achieving the Desired Bandwidth .. 3–13
Clock Compensation .. 3–18
Lane Polarity & Order Reversal ... 3–22
 iii

Contents
Choosing Ports .. 3–25
Streaming & Packet Data .. 3–27
Packet Sizes ... 3–28
Channel Multiplexing .. 3–30
Data Integrity Protection: CRC .. 3–33
Retry on Error ... 3–35
Flow Control ... 3–39
The Receive FIFO Buffers .. 3–42
Error Handling ... 3–51
Transceiver Settings ... 3–55
Optimizing the Implementation .. 3–63
Initialization & Restart ... 3–68

Chapter 4. SerialLite Testbench
General Description ... 4–1
Testbench Environment .. 4–1
Methodology Overview .. 4–2
Configuring the Simulation ... 4–3

Sending & Receiving Data Tasks ... 4–5
User Packet Data .. 4–9
Running a Simulation .. 4–12
Simulation Pass & Fail Conditions .. 4–12
iv MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide

Altera Corporation MegaC
About This User Guide
Revision History The table below displays the revision history for the chapters in this User
Guide.

How to Contact
Altera

For the most up-to-date information about Altera® products, go to the
Altera world-wide web site at www.altera.com. For technical support on
this product, go to www.altera.com/mysupport. For additional
information about Altera products, consult the sources shown below.

Typographic
Conventions

This document uses the typographic conventions shown below.

Chapter Date Version Changes Made

All September 2004 1.0.0 First version of user guide.

Information Type USA & Canada All Other Locations

Technical support www.altera.com/mysupport/ altera.com/mysupport/

(800) 800-EPLD (3753)
7:00 a.m. to 5:00 p.m. Pacific Time

+1 408-544-8767
7:00 a.m. to 5:00 p.m. (GMT -8:00)
Pacific Time

Product literature www.altera.com www.altera.com

Altera literature services lit_req@altera.com lit_req@altera.com

Non-technical customer
service

(800) 767-3753 +1 408-544-7000
7:00 a.m. to 5:00 p.m. (GMT -8:00)
Pacific Time

FTP site ftp.altera.com ftp.altera.com

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.
ore Function Version 1.0.0 v
SerialLite MegaCore Function User Guide

http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
ftp://ftp.altera.com
ftp://ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport

Typographic Conventions
Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c
The caution indicates required information that needs special consideration and
understanding and should be read prior to starting or continuing with the
procedure or process.

w The warning indicates information that should be read prior to starting or
continuing the procedure or processes

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

Visual Cue Meaning
vi MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide

Altera Corporation MegaC
September 2004
Chapter 1. About This
MegaCore Function
Release
Information

Table 1–1 provides information about this release of the SerialLite
MegaCore® function.

Device Family
Support

MegaCore functions provide either full or preliminary support for target
Altera® device families, as described below:

■ Full support means the MegaCore function meets all functional and
timing requirements for the device family and may be used in
production designs.

■ Preliminary support means the MegaCore function meets all
functional requirements, but may still be undergoing timing analysis
for the device family; it may be used in production designs with
caution.

Table 1–2 shows the level of support offered by the SerialLite MegaCore
function to each Altera device family.

Table 1–1. SerialLite Release Information

Item Description

Version 1.0.0

Release Date September 2004

Ordering Code IP-SERIALLITE

Product ID(s) 00A6

Vendor ID(s) 6AF7

Table 1–2. Device Family Support

Device Family Support

Stratix® GX Full support

Other device families No support
ore Function Version 1.0.0 1–1
Preliminary

Features
Introduction The SerialLite MegaCore function is a simple, high-speed, low-latency,
low-resource, point-to-point serial data communication link. It
implements the full SerialLite protocol with performance up to 3.125
Gbps across the serial data communication link. It is highly configurable,
providing a wide range of functionality suited to moving data in many
different environments.

Features ■ 500 Mbps to 3.125 Gbps per lane
■ Supports up to 16 lanes
■ Support for two user packet types: data packet and priority packet
■ Nesting of time-critical priority packets within regular data packets
■ Unrestricted data packet size
■ Priority packet size up to 256 bytes
■ Optional lane polarity reversal
■ Optional lane order reversal
■ Optional packet integrity protection using cyclic redundancy code

CRC-32 or CRC-16
■ Optional priority packet retry-on-error
■ Optional flow control
■ Automatic handling of idles
■ Synchronous or asynchronous operation
■ Automatic clock rate compensation for asynchronous use

● 100 and 300 parts per million (ppm)
■ Error detection
■ Atlantic™ interface compliant
■ 8B/10B physical layer encoding and decoding
■ Electricals based on familiar XAUI standard
■ Low protocol overhead and logic usage
■ Low point-to-point transfer latency
■ No inter-frame gaps required
■ Easy-to-use IP Toolbench interface
■ IP functional simulation models for use in Altera-supported VHDL

and Verilog HDL simulators
■ Support for OpenCore® Plus evaluation
1–2 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

About This MegaCore Function
General
Description

The SerialLite MegaCore function provides a simple and lightweight way
to move data from one point to another reliably at high speeds. It consists
of a serial link of up to 16 bonded lanes, with logic to provide a number
of basic and optional link support functions. The Atlantic interface is used
as the primary access for delivering and receiving data.

The SerialLite protocol specifies a link that is simple to build, uses as little
logic as possible, and requires little work for a logic designer to utilize. All
of the features available in the SerialLite protocol have been implemented
in the SerialLite MegaCore function and are parameterizable through a
powerful MegaWizard® Plug-In Manager interface.

A link built using the SerialLite MegaCore function can operate at speeds
from 500 Mbps to 3.125 Gbps. Link reliability is enhanced by the 8B/10B
encoding scheme and optional cyclic redundancy code (CRC)
capabilities. Further reductions in the bit-error rate can be achieved using
the optional retry-on-error feature. Data rate and consumption
mismatches can be accommodated using the optional
clock-compensation and flow-control features to ensure that no data is
lost.

The combination of optional capabilities makes the link well-suited to a
wide variety of applications. It is intended to support chip-to-chip, board-
to-board, and cross-backplane data transfers.

OpenCore Plus Evaluation

With the free Altera OpenCore Plus evaluation feature, you can perform
the following actions:

■ Simulate the behavior of a MegaCore function within your system
■ Verify the functionality of your design, as well as quickly and easily

evaluate its size and speed
■ Generate time-limited device programming files for designs that

include MegaCore functions
■ Program a device and verify your design in hardware

You only need to purchase a license for the MegaCore function when you
are completely satisfied with its functionality and performance, and want
to take your design to production.

f For more information on OpenCore Plus hardware evaluation using the
SerialLite MegaCore function, see “OpenCore Plus Time-Out Behavior”
on page 3–1 and AN 320: OpenCore Plus Evaluation of Megafunctions at
www.altera.com.
Altera Corporation MegaCore Function Version 1.0.0 1–3
September 2004 SerialLite MegaCore Function User Guide

Performance
Performance Table 1–3 shows typical expected performance for the SerialLite
MegaCore function in Stratix® GX devices. Results were generated using
the Quartus® II software version 4.1.

Table 1–3. SerialLite Utilization Matrix

Memory Blocks

Parameters LEs (1) M512 M4K fM A X

1 lane, streaming 800 5 0 179

1 lane, packet 961 2 3 181

1 lane, packet with CRC-16 1525 2 4 182

1 lane, packet with CRC-32 1877 2 4 174

1 lane, packet with flow control 1140 5 10 155

2 lane, packet 1819 9 3 152

2 lane, packet with CRC-16 2832 10 4 154

2 lane, packet with CRC-32 3330 10 4 155

4 lane, packet 2897 15 6 150

4 lane, packet with CRC-16 4661 16 8 148

4 lane, packet with CRC-32 5708 16 8 149

8 lane, packet 5232 25 12 141

8 lane, packet with CRC-16 8832 26 16 137

8 Lane, packet with CRC-32 11454 26 16 130

16 lane, streaming 7228 50 22 140

16 lane, packet 9506 49 24 134

16 lane, packet with CRC-16 16956 50 32 127

16 lane, packet with CRC-32 21733 50 32 125

16 lane, packet with flow control 11114 53 105 112

Note to Table 1–3:
(1) Logic element (LE).
1–4 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Altera Corporation MegaC
September 2004
Chapter 2. Getting Started
System
Requirements

The instructions in this section require the following hardware and
software:

■ A PC running the Windows NT/2000/XP or Red Hat Linux 7.3 or 8.0
operating system; or a Sun workstation running the Solaris 7 or 8
operating system

■ Quartus® II software version 4.1 or higher
■ ModelSim® version 5.8 or higher for running the testbench
■ Verilog 2000 support
■ 2 GB of RAM highly recommended
■ Adobe Acrobat Reader version 5.0 or higher

Design Flow The design flow to evaluate the SerialLite MegaCore® function using the
OpenCore® Plus feature involves the following steps:

1. Download and install the SerialLite MegaCore function.

2. Create a variation of the SerialLite MegaCore function using IP
Toolbench.

1 IP Toolbench is a toolbar from which you can quickly and
easily view documentation, specify parameters, and
generate all of the files necessary for integrating the
parameterized MegaCore function into your design. You
can launch IP Toolbench from within the Quartus II
software.

3. Implement the rest of your design using the design entry method of
your choice.

4. Use IP Toolbench-generated IP functional simulation model to
verify the operation of your design.

f For more information on IP functional simulation models, refer to the
Using IP Functional Simulation Models to Verify Your System Design white
paper at www.altera.com.

5. Use the Quartus II software to compile your design.
ore Function Version 1.0.0 2–1
Preliminary

Download & Install the SerialLite MegaCore Function
1 You may also generate an OpenCore Plus time-limited
programming file, which you can use to verify the
operation of your design in hardware.

6. Purchase a license for the SerialLite MegaCore function.

Once you have purchased a license for the SerialLite MegaCore function,
the design flow involves the following additional steps:

1. Set up licensing.

2. Generate a programming file for the Altera® device(s) on your
board.

3. Program the Altera device(s) with the completed design.

4. Perform design verification.

Download &
Install the
SerialLite
MegaCore
Function

To begin using the SerialLite MegaCore function, you must obtain the
MegaCore files and install them on your computer. Altera MegaCore
functions can be installed from the MegaCore IP Library CD-ROM either
during or after Quartus II software installation, or downloaded
individually from the Altera web site and installed separately.

1 The following instructions describe the process of downloading
and installing the SerialLite MegaCore function. If you have
already installed the SerialLite MegaCore function from the
MegaCore IP Library CD-ROM, skip to “Directory Structure” on
page 2–4.

Download the SerialLite MegaCore Function

If you have Internet access, you can download MegaCore functions from
Altera’s web site at www.altera.com. Follow the instructions below to
obtain the SerialLite MegaCore function via the Internet. If you do not
have Internet access, you can obtain the SerialLite MegaCore function
from your local Altera representative.

1. Point your web browser towww.altera.com/ipmegastore.

2. Type SerialLite in the IP MegaSearch box.

3. Click Go.

4. Choose SerialLite from the search results page. The product
description web page displays.
2–2 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Getting Started
5. Click Download Free Evaluation on the top right of the product
description web page.

6. Fill out the registration form and click Submit Request.

7. Read the Altera MegaCore license agreement, turn on the I have
read the license agreement check box, and click Proceed to
Download Page.

8. Follow the instructions on the SerialLite MegaCore function
download and installation page to download the MegaCore
function and save it to your hard disk.

1 There is a specific MegaCore function download file for
each supported operating system.

Install the SerialLite MegaCore Function Files

The following instructions describe how you install the SerialLite
MegaCore function on computers running the Windows, Linux, or Solaris
operating systems.

Windows

Follow these steps to install the SerialLite MegaCore function on a PC
running a supported version of the Windows operating system:

1. Choose Run (Windows Start menu).

2. Type <path>\slite-v<version>.exe, where <path> is the location
of the downloaded MegaCore function.

3. Click OK. The SerialLite Installation dialog box appears. Follow
the on-screen instructions to finish installation.
Altera Corporation MegaCore Function Version 1.0.0 2–3
September 2004 SerialLite MegaCore Function User Guide

SerialLite MegaCore Function Walkthrough
Linux & Solaris

Follow these steps to install the SerialLite MegaCore function on a
computer running supported versions of the Linux and Solaris operating
systems:

1. Decompress the package by typing the following command:

gzip -d slite-v<version>.tar.gz

2. Extract the package by typing the following command:

tar -xvf slite-v<version>.tar

Directory Structure

Figure 2–1 shows the directory structure for the SerialLite MegaCore
function.

Figure 2–1. SerialLite MegaCore Function Directory Structure

SerialLite
MegaCore
Function
Walkthrough

This walkthrough explains how to create a SerialLite MegaCore function
variation using the Altera SerialLite IP Toolbench and the Quartus II
software on a PC. When you are finished generating a SerialLite
MegaCore function variation, you can incorporate it into your overall
project.

1 IP Toolbench only allows you to select legal combinations of
parameters and warns you of any invalid configurations.

<path>

ip_toolbench
Contains the common IP Toolbench files.

doc
Contains the documentation for the MegaCore function.

lib
Contains the encrypted Verilog HDL design files and the testbench files.
After installation, add this directory as a user library in your Quartus II project.

Common

slite-v<version>

Contains the common MegaCore function files.

Contains the SerialLite MegaCore Function files and documentation.
2–4 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Getting Started
This walkthrough involves the following steps:

■ “Create a New Quartus II Project” on page 2–5
■ “Launch IP Toolbench” on page 2–5
■ “Step 1: Parameterize” on page 2–7
■ “Step 2: Set Up Simulation” on page 2–12
■ “Step 3: Generate” on page 2–14

Create a New Quartus II Project

Before you begin, you must create a new Quartus II project. With the New
Project wizard, you specify the working directory for the project, assign
the project name, and designate the name of the top-level design entity.
You also specify the SerialLite MegaCore function user library. To create
a new project, follow these steps:

1. Choose Programs > Altera > Quartus II 4.1 (Windows Start menu)
to run the Quartus II software.

2. Choose New Project Wizard (File menu).

3. Click Next in the introduction (the introduction does not display if
you turned it off previously).

4. Specify the working directory for your project. This walkthrough
uses the directory c:\MegaCore\slite_v1.0.0.

5. Specify the name of the project. This walkthrough uses slite_demo.

6. Click Next.

7. Choose the Stratix® GX family in the Family list.

8. Click Finish.

You have finished creating your new Quartus II project.

Launch IP Toolbench

To launch IP Toolbench in the Quartus II software, follow these steps:

1. Start the MegaWizard® Plug-In Manager by choosing MegaWizard
Plug-In Manager (Tools menu). The MegaWizard Plug-In Manager
dialog box is displayed.

1 Refer to the Quartus II Help for more information on how
to use the MegaWizard Plug-In Manager.
Altera Corporation MegaCore Function Version 1.0.0 2–5
September 2004 SerialLite MegaCore Function User Guide

SerialLite MegaCore Function Walkthrough
2. Specify that you want to create a new megafunction variation and
click Next.

3. Expand the Communications folder under Installed Plug-Ins by
clicking the + icon next to the name.

4. Select SerialLite -v1.0.0 in the SerialLite directory.

5. Choose the output file type for your design.

6. Specify a name for the output file, <directory name>\<variation
name>. This walkthrough uses the name slite_v1.0.0\slite_demo.
Figure 2–2 shows the wizard after you have made these settings.

Figure 2–2. Select the MegaCore Function From the Megafunction List

7. Click Next to launch IP Toolbench for the SerialLite MegaCore
function.
2–6 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Getting Started
Step 1: Parameterize

There are four pages in the Parameterize - SerialLite MegaCore function
wizard available for parameterizing your link. All of the settings for these
pages are detailed in Chapter 3, Specifications.

1 No changes to the default configuration are made in this
walkthrough.

You move from page to page either by clicking the tabs at the top of the
pages or by navigating using the First, Previous, Next, and Last buttons.
The First button takes you to the Basic Configuration page, the Previous
button takes you to the page whose tab is to the left of the current page,
the Next button takes you to the page whose tab is to the right of the
current page, and the Last button takes you to the Advanced Electricals
page. You can make changes in any order, but if you move through the
pages in the order indicated, no setting changes are required for you to
revisit a page you have already completed.

To create a SerialLite MegaCore function, do the following:

1. In IP Toolbench, click Step 1: Parameterize. This brings up the Basic
Configuration page (see Figure 2–3).

The Basic Configuration page allows you to configure the general
characteristics of the link. Included on this page are settings for the
following:

● Bit rate
● Lane count
● Wire delay
● Clock configuration
● Lane polarity reversal
● Lane order reversal
Altera Corporation MegaCore Function Version 1.0.0 2–7
September 2004 SerialLite MegaCore Function User Guide

SerialLite MegaCore Function Walkthrough
Figure 2–3. SerialLite MegaCore Function Basic Configuration Page

2. After you choose your settings on the Basic Configuration page,
click Next to go to the Data Ports page.

This page allows you to select and configure the data ports, as shown
in Figure 2–4. You can select the regular data port and the priority
data port. For the regular data port, you can set the following:

● Data mode (packet or streaming)
● Channel multiplexing options
● Cyclic redundancy code (CRC) options

For the priority port, you can set the following:

● Maximum packet length
● Channel multiplexing options
● CRC options
● Retry-on-error options
2–8 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Getting Started
Figure 2–4. SerialLite MegaCore Function Data Ports Page

3. After you choose your settings on the Data Ports page, click Next to
go to the Atlantic Receive FIFO Buffer page.

On this page you can configure flow control and the receive FIFO
buffer sizes. The options on this page depend heavily on whether or
not flow control is enabled. Figure 2–5 shows the options with flow
control disabled. The default configuration, used in this
walkthrough, uses no flow control.
Altera Corporation MegaCore Function Version 1.0.0 2–9
September 2004 SerialLite MegaCore Function User Guide

SerialLite MegaCore Function Walkthrough
Figure 2–5. SerialLite MegaCore Function Atlantic Receive FIFO Buffer Page
(Flow Control Disabled)

4. After you choose your settings on the Atlantic Receive FIFO Buffer
page, click Next to go to the Advanced Electricals page. This page,
shown in Figure 2–6, allows you to configure electrical settings for
the ALTGXB transceivers found in the Stratix GX devices. You can
set the following characteristics:

● Transmitter phase-locked loop (PLL) bandwidth
● Receiver PLL bandwidth
● Transmitter termination
● Output differential voltage (VOD)
● Pre-emphasis
● Equalization
● Signal loss behavior
2–10 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Getting Started
Figure 2–6. SerialLite MegaCore Function Advanced Electricals Page

You can also bias the design to optimize for speed or size. This
selection is available independently of the four pages.

The wizard gives you an estimate of the logic used. This is only an
estimate, and depends on what else is being instantiated in the
Stratix GX device. For an accurate count of resources utilized, you
must synthesize the design.

5. Continue with the default configuration and click Finish.
Altera Corporation MegaCore Function Version 1.0.0 2–11
September 2004 SerialLite MegaCore Function User Guide

SerialLite MegaCore Function Walkthrough
Step 2: Set Up Simulation

An IP functional simulation model is a cycle-accurate VHDL or Verilog
HDL model file produced by the Quartus II software. It allows for fast
functional simulation of IP using industry-standard VHDL and Verilog
HDL simulators.

1 You may only use these simulation model output files for
simulation purposes and expressly not for synthesis or any
other purposes. Using these models for synthesis creates a
nonfunctional design.

To generate an IP functional simulation model for your MegaCore
function, follow these steps:

1. Click Step 2: Set Up Simulation in IP Toolbench (see Figure 2–7).

Figure 2–7. IP Toolbench–Set Up Simulation

2. Turn on Generate Simulation Model (see Figure 2–8).
2–12 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Getting Started
Figure 2–8. Generate Simulation Model

3. Choose the language in the Language list.

1 If VHDL is selected, your simulation environment must
support mixed-language simulation to use the SerialLite
testbench. If it does not, generate a second simulation
model using Verilog HDL for use with the SerialLite
testbench by repeating step 2.

4. Click OK.
Altera Corporation MegaCore Function Version 1.0.0 2–13
September 2004 SerialLite MegaCore Function User Guide

SerialLite MegaCore Function Walkthrough
Step 3: Generate

To generate your MegaCore function variation, follow these steps:

1. Click Step 3: Generate in IP Toolbench (see Figure 2–9).

Figure 2–9. IP Toolbench–Generate

2. The generation report lists the design files that IP Toolbench creates
(see Figure 2–10). Click Exit.
2–14 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Getting Started
Figure 2–10. Generation

Table 2–1 describes IP Toolbench-generated files.

Table 2–1. IP Toolbench-Generated Files (Part 1 of 2)

Extension Description

.vhd or .v A MegaCore function variation file, which defines a VHDL or Verilog HDL top-level
description of the MegaCore function variation. Instantiate the entity defined by this file
inside of your design. Include this file when compiling your design in the Quartus II
software.

.cmp A VHDL component declaration file for the MegaCore function variation. Add the
contents of this file to any VHDL architecture that instantiates the MegaCore function.

_bb.v Verilog HDL black-box file for the MegaCore function variation. Use this file when
using a third-party EDA tool to synthesize your design.

.bsf Quartus II symbol file for the MegaCore function variation. You can use this file in the
Quartus II block diagram editor.

.html MegaCore function report file.

_sl_core.vo or
_sl_core.vho

VHDL or Verilog HDL IP functional simulation model.

_inst.vhd or _inst.v VHDL or Verilog HDL sample instantiation file.

_core_params.txt SerialLite MegaCore function configuration information for use by the testbench.

_constraints.tcl Tcl script for applying virtual pin constraints when compiling the SerialLite MegaCore
function by itself.
Altera Corporation MegaCore Function Version 1.0.0 2–15
September 2004 SerialLite MegaCore Function User Guide

Simulate the Design
Simulate the
Design

You can simulate your design using IP Toolbench-generated VHDL and
Verilog HDL IP functional simulation models.

f For more information on IP functional simulation models, refer to the
Using IP Functional Simulation Models to Verify Your System Design white
paper at www.altera.com.

Altera also provides a configurable testbench for use in evaluating the
SerialLite MegaCore function. The testbench is described in detail in
Chapter 4, SerialLite Testbench.

Compile the
Design

You use the Quartus II software to compile your design. Refer to
Quartus II Help for instructions on performing compilation.

_tb.do SerialLite testbench script. Used for simulating a SerialLite MegaCore function
variation using the SerialLite testbench.

_tb.v SerialLite testbench top-level file. Used when simulating a SerialLite MegaCore
function variation using the SerialLite testbench.

_vsim_arg.txt ModelSim simulation arguments file. Used when simulating a SerialLite MegaCore
function variation using the SerialLite testbench.

_vlog_arg.txt ModelSim compilation arguments file. Used when simulating a SerialLite MegaCore
function variation using the SerialLite testbench.

_tb_params.txt SerialLite testbench parameter file. You change parameter values in this file to control
testbench behavior.

_sl_top.v Top instance file.

_sl_top_polarity.v Top (polarity) instance file.

_sl_core.v MegaCore function variation file.

.inc An AHDL include declaration file for the MegaCore function variation. Include this
file with any AHDL architecture that instantiates the MegaCore function.

Table 2–1. IP Toolbench-Generated Files (Part 2 of 2)

Extension Description
2–16 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Getting Started
Apply Constraints

If you are compiling the SerialLite MegaCore function variation by itself,
the pins must be declared as virtual pins. A Tcl script handles that for
you.

1. From the Tools menu, select Tcl Scripts to bring up the script
browser.

2. In the project directory, select <design name>_constraints.tcl.

3. Click Run.

The Tcl script also adds several timing constraints and fitter guide
settings that typically produce the best fMAX. Use this script as a guide
when setting constraints for the SerialLite MegaCore function variation
when implementing an actual design. The timing constraints are
currently for the SerialLite MegaCore function variation by itself, and
must be updated with hierarchy information in your own design.

The fitter guide settings may cause conflicts with your Quartus II
software settings. These are the guide settings being used:

■ DEVICE_FILTER_SPEED_GRADE FASTEST
■ STRATIX_OPTIMIZATION_TECHNIQUE SPEED
■ AUTO_PACKED_REGISTERS_STRATIX OFF
■ MUX_RESTRUCTURE OFF
■ STATE_MACHINE_PROCESSING AUTO
■ FITTER_EFFORT "STANDARD FIT"

You can now integrate your MegaCore function variation into your
design and simulate and compile.
Altera Corporation MegaCore Function Version 1.0.0 2–17
September 2004 SerialLite MegaCore Function User Guide

Set Up Licensing
Program a
Device

After you have compiled your design, program your targeted Altera
device and verify your design in hardware.

With Altera’s free OpenCore Plus evaluation feature, you can evaluate
the SerialLite MegaCore function before you purchase a license.
OpenCore Plus evaluation allows you to generate an IP functional
simulation model and produce a time-limited programming file.

f For more information on IP functional simulation models, refer to the
Using IP Functional Simulation Models to Verify Your System Design white
paper at www.altera.com.

You can simulate the SerialLite MegaCore function in your design, and
perform a time-limited evaluation of your design in hardware.

f For more information on OpenCore Plus hardware evaluation using the
SerialLite MegaCore Function, see “OpenCore Plus Time-Out Behavior”
on page 3–1 and AN 320: OpenCore Plus Evaluation of Megafunctions at
www.altera.com.

Set Up Licensing You need to purchase a license for the MegaCore function only when you
are completely satisfied with its functionality and performance and want
to take your design to production.

After you purchase a license for the SerialLite MegaCore function, you
can request a license file from the Altera web site at
www.altera.com/licensing and install it on your computer. When you
request a license file, Altera e-mails you a license.dat file. If you do not
have Internet access, contact your local Altera representative.

To install your license, you can either append the license to your
license.dat file or you can specify the MegaCore function’s license.dat
file in the Quartus II software.

1 Before you set up licensing for the SerialLite MegaCore function,
you must already have the Quartus II software installed on your
computer with licensing set up.
2–18 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Getting Started
Append the License to Your license.dat File

To append the license, follow these steps:

1. Close the following software if it is running on your PC:

● Quartus II software
● MAX+PLUS® II software
● LeonardoSpectrum™ synthesis tool
● Synplify software
● ModelSim® simulator

2. Open the SerialLite MegaCore function license file in a text editor.
The file should contain one FEATURE line, spanning 2 lines.

3. Open your Quartus II license.dat file in a text editor.

4. Copy the FEATURE line from the SerialLite MegaCore function
license file and paste it into the Quartus II license file.

1 Do not delete any FEATURE lines from the Quartus II
license file.

5. Save the Quartus II license file.

1 When using editors such as Microsoft Word or Notepad,
ensure that the file does not have extra extensions
appended to it after you save (for example, license.dat.txt
or license.dat.doc).

Specify the License File in the Quartus II Software

To specify the MegaCore function’s license file, follow these steps:

1 Altera recommends that you give the file a unique name, for
example, <core name>_license.dat.

1. Run the Quartus II software.

2. Choose License Setup (Tools menu). The Options dialog box opens
to the License Setup page.
Altera Corporation MegaCore Function Version 1.0.0 2–19
September 2004 SerialLite MegaCore Function User Guide

Set Up Licensing
3. In the License file box, add a semicolon to the end of the existing
license path and filename.

4. Type the path and filename of the MegaCore function license file
after the semicolon.

1 Do not include any spaces either around the semicolon or in
the path/filename.

5. Click OK to save your changes.
2–20 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Altera Corporation MegaC
September 2004
Chapter 3. Specifications
Functional
Description

The SerialLite MegaCore® function consists of parameterized logic and a
parameterized testbench. The following sections detail the various
possible configurations and things you should consider when deciding
how to configure the link.

OpenCore Plus Time-Out Behavior

OpenCore® Plus hardware evaluation can support the following two
modes of operation:

■ Untethered—the design runs for a limited time
■ Tethered—requires a connection between your board and the host

computer. If tethered mode is supported by all megafunctions in a
design, the device can operate for a longer time or indefinitely

All megafunctions in a device time out simultaneously when the most
restrictive evaluation time is reached. If there is more than one
megafunction in a design, a specific megafunction’s time-out behavior
may be masked by the time-out behavior of the other megafunctions.

1 For MegaCore functions, the untethered timeout is 1 hour; the
tethered timeout value is indefinite.

Your design stops working after the hardware evaluation time expires.
The TENA and THENA signals ignore attempts to write to the SerialLite
MegaCore function, and the RENA and RHENA signals ignore attempts to
read from the SerialLite MegaCore function.

f For more information on OpenCore Plus hardware evaluation, see
“OpenCore Plus Evaluation” on page 1–3 and AN 320: OpenCore Plus
Evaluation of Megafunctions on www.altera.com.
ore Function Version 1.0.0 3–1
Preliminary

Functional Description
SerialLite Link
Configuration

The general decisions you must make for your SerialLite MegaCore
function are:

■ High-level link configuration
■ Bandwidth required
■ Which port(s) to use
■ Whether to use packet or streaming data
■ Whether to multiplex multiple channels
■ Whether to use CRC
■ Whether to implement the retry-on-error feature
■ Whether to implement flow control
■ How to size the receive FIFO buffers
■ Electrical characteristics of the Stratix® GX transceivers

IP Toolbench provides a fully functional default SerialLite MegaCore
function variation ready for instantiation. The result is a link with the
characteristics shown in Table 3–1. The following sections describe all of
these features.

Table 3–1. Default SerialLite Link (Part 1 of 2)

Feature Default Configuration

Bit rate 3.125 Mbps

Lane count 1

Wire delay 2.5 ns

Clock configuration Both ends of link use the same clock
source (no clock compensation)

Lane polarity reversal Test only, no reversal

Lane order reversal NA (only one lane)

Regular data port Enabled

Data mode Packet

Channel multiplexing
(regular data port)

Disabled

CRC (regular data port) Disabled

Priority data port Disabled

Retry on error NA (priority data port disabled)

Flow control Disabled

Receive FIFO buffer size
(regular data port)

Minimum (16 entries)

Transmitter PLL bandwidth Low

Receiver PLL bandwidth Low

Transmitter termination 100 Ω
3–2 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Link Consistency

A SerialLite link consists of two instantiations of logic implementing the
SerialLite protocol. Each end of the link has a transmitter and a receiver,
as shown in Figure 3–1.

Figure 3–1. Complete SerialLite Link

The SerialLite protocol is not a plug-and-play protocol. While there are
many configurations to choose from, you must make sure that both ends
of your link have the same configuration.

In particular, the SerialLite protocol specifies a symmetric link. The
number of lanes in one direction must match the number of lanes in the
other direction.

VO D 1,000 mV

Pre-emphasis 0

Equalization 0

Signal detection Disabled

Table 3–1. Default SerialLite Link (Part 2 of 2)

Feature Default Configuration

Stratix GX Device

SerialLite System

Stratix GX Device

SerialLite
MegaCore

System

Logic Logic

One or
more lanes

TX

RX

RX

TX

Atlantic InterfaceAtlantic Interface

High-Speed
Transceivers

High-Speed
Transceivers

Function
MegaCore
Function
Altera Corporation MegaCore Function Version 1.0.0 3–3
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Interface Overview

The SerialLite MegaCore function has four interfaces, shown in
Figure 3–2:

■ The Atlantic™ interface
■ The high-speed serial interface
■ The status interface
■ The transceiver control interface

Figure 3–2. SerialLite MegaCore Function Interfaces

1 For clarity, the word interface is used to refer to the four
interfaces noted above, and the word port is used to refer to the
specific data ports on the Atlantic interface that allow for regular
or priority data.

The status interface is discussed in “Status Interface” on page 3–53. The
transceiver control interface is discussed in “Transceiver Settings” on
page 3–55.

SerialLite
MegaCore

Status Transceiver
Control

Atlantic Interface
Transmit

Atlantic Interface
Receive

High-Speed

Serial Interface

MRESET_NCLK

Function
3–4 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Atlantic Interface

The Atlantic interface (see Figure 3–3) provides a standard mechanism
for delivering data to and accepting data from the SerialLite MegaCore
function. It is a full-duplex, synchronous point-to-point connection
interface that supports a variety of data widths.

f For more information on this interface, refer to FS 13: Atlantic Interface,
available at www.altera.com.

Figure 3–3. Atlantic Interfaces

The SerialLite MegaCore function allows you to create one or two data
ports: one for regular data and one for priority data. Each of these ports
has a full Atlantic interface. Therefore, you may have one of the three
configurations shown in Figures 3–4, 3–5, and 3–6. See “Choosing Ports”
on page 3–25 for a full description of the behavior of these ports.

Status Transceiver
Control

Atlantic Interface
Transmit

Atlantic Interface
Receive

High-Speed

Serial Interface

MRESET_NCLK

SerialLite
MegaCore
Function
Altera Corporation MegaCore Function Version 1.0.0 3–5
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Figure 3–4. Atlantic Interface for Regular Data Port Configuration

Figure 3–5. Atlantic Interface for Priority Data Port Configuration

SerialLite

TENA
TDAV
TSOP
TEOP
TERR
TMTY
TDAT
TADR

RENA
RDAV
RVAL
RSOP
REOP
RERR
RMTY
RDAT
RADR

System

Logic

MegaCore

Function

Regular Data Port

Variation

THENA
THDAV
THSOP
THEOP
THERR
THMTY
THDAT
THADR

RHENA
RHDAV
RHVAL
RHSOP
RHEOP
RHERR
RHMTY
RHDAT
RHADR

System

Logic

Priority Data Port

SerialLite

MegaCore

Function

Variation
3–6 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Figure 3–6. Atlantic Interface for Regular & Priority Data Port Configuration

The SerialLite MegaCore function is always an Atlantic interface slave.
The logic on either side of the SerialLite link always acts as a master. This
document refers to the logic that drives data into the SerialLite MegaCore
function or receives data from the SerialLite MegaCore function as the
“system logic.”

TENA
TDAV
TSOP
TEOP
TERR
TMTY
TDAT
TADR

RENA
RDAV
RVAL
RSOP
REOP
RERR
RMTY
RDAT
RADR

THENA
THDAV
THSOP
THEOP
THERR
THMTY
THDAT
THADR

RHENA
RHDAV
RHVAL
RHSOP
RHEOP
RHERR
RHMTY
RHDAT
RHADR

System

Logic

Regular Data Port

Priority Data Port

SerialLite

MegaCore

Function

Variation
Altera Corporation MegaCore Function Version 1.0.0 3–7
September 2004 SerialLite MegaCore Function User Guide

Functional Description
The Atlantic interface signals are described in Table 3–2. The signals
required for a given configuration, as well as the appropriate bus widths,
are created automatically by IP Toolbench based upon the features you
select. All Atlantic interface signals operate in the system clock domain.

Table 3–2. Atlantic Interface Signals (Part 1 of 4)

Name Direction Description

TDAT[]
THDAT[]

Input Data buses. A data bus carries the main payload data. The width of the bus is
determined by the number of lanes in the SerialLite MegaCore function
configuration. The width, in bytes, is twice the number of lanes. For example, a
1-lane configuration is 2 bytes wide and a 4-lane configuration is 8 bytes wide. The
system logic places data on the data bus for transmission, and reads data on the
data bus for reception.

Data is presented in big-endian order. Valid bytes are aligned with the most
significant byte (MSB). For example, in a 2-lane configuration (which has a
4-byte-wide data bus), if only 3 bytes are valid on the final cycle of a packet, the valid
data appears on bits [31..8]of the data bus, and the invalid byte is bits [7..0]
of the data bus.

TDAT[] is driven by the system logic to transmit data on the regular data port.
THDAT[] is driven by the system logic to transmit data on the regular data port.
RDAT[] is driven by the SerialLite MegaCore function to deliver received data on
the priority data port.
RHDAT[] is driven by the SerialLite MegaCore function to deliver received data on
the priority data port.

RDAT[]
RHDAT[]

Output

TADR[]
THADR[]

Input The optional address buses. An address bus is only used on ports that enable
Channel Multiplexing. The system logic places the channel number on the address
bus for transmission, and reads the channel number from the address bus on
reception. The width of the address bus is determined by the number of channels
being multiplexed. The address bus must be valid at the same time as the data bus,
and must remain constant throughout a complete packet.

TADR[] is driven by the system logic to transmit the channel number on the regular
data port if channel multiplexing is enabled for the regular data port.
THADR[] is driven by the system logic to transmit the channel number on the priority
data port if channel multiplexing is enabled for the priority data port.
RADR[] is driven by the SerialLite MegaCore function to deliver the received
channel number on the regular data port if channel multiplexing is enabled for the
regular data port.
RHADR[] is driven by the SerialLite MegaCore function to deliver the received
channel number on the priority data port if channel multiplexing is enabled for the
priority data port.

RADR[]
RHADR[]

Output
3–8 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
TMTY[]
THMTY[]

Input Word empty buses. A word-empty bus indicates the number of words that contain
no data on the last cycle of a packet. The system logic places the appropriate value
on the word-empty bus for transmission, and reads its value on reception.
The word-empty bus should always be all zero except on the last cycle of a packet
on the data bus. When the end-of-packet (EOP) signal is asserted, the number of
invalid data bytes on the data bus is specified by the word-empty bus. The width of
the word-empty bus is the number of bits required to represent the maximum
possible number of empty bytes. For example, in a 4-lane link, there are 8 bytes of
data and 7 possible invalid bytes (at least one byte must be valid). The word-empty
bus is therefore 3 bits wide to represent values up to 7.
TMTY[] is driven by the system logic to specify the number of empty bytes at the
end of a packet to be transmitted on the regular data port (packet mode only).
RMTY[] is driven by the SerialLite MegaCore function to specify the number of
empty bytes at the end of a packet being received on the regular data port (packet
mode only).
THMTY[] is driven by the system logic to specify the number of empty bytes at the
end of a packet to be transmitted on the priority data port.
RHMTY[] is driven by the SerialLite MegaCore function to specify the number of
empty bytes at the end of a packet being received on the priority data port.

RMTY[]
RHMTY[]

Output

TENA
THENA

Input Data transfer enable. The data transfer enable signal is driven by the system logic
and controls the data flow across the interface.
When transmitting data, the data transfer enable signal acts as a write-enable from
the system logic to the SerialLite MegaCore function. The system logic asserts the
data transfer enable signal and the data bus signals simultaneously. When the
SerialLite MegaCore function observes the data transfer enable signal asserted on
the rising clock edge, it immediately captures the Atlantic data interface signals.
TENA acts as a write enable to the regular data port.
THENA acts as a write enable to the priority data port.

RENA
RHENA

Input When receiving data, the data transfer enable signal acts as a read-enable from the
system logic to the SerialLite MegaCore function. When the SerialLite MegaCore
function observes the data transfer enable signal asserted on the rising clock edge,
it drives on the next clock edge the Atlantic data interface signals and asserts the
data-valid signal. The system logic captures the Atlantic data interface signals on the
following rising clock edge. If the SerialLite MegaCore function is unable to provide
new data, it deasserts the data valid signal for one or more clock cycles until it is
prepared to drive the valid data interface signals.
RENA acts as a read enable to the regular data port.
RHENA acts as a read enable to the priority data port.

Table 3–2. Atlantic Interface Signals (Part 2 of 4)

Name Direction Description
Altera Corporation MegaCore Function Version 1.0.0 3–9
September 2004 SerialLite MegaCore Function User Guide

Functional Description
TDAV
THDAV
RDAV
RHDAV

Output Data available. The data-available signal is driven by the SerialLite MegaCore
function to indicate readiness for transmitting or receiving data. When transmitting
data, the data-available signal indicates that there is enough space in the SerialLite
MegaCore function for one data cycle to be written; THDAV indicates there is enough
space in the SerialLite MegaCore function for one packet to be written. When
receiving data, the data-available signal indicates that there is at least one cycle’s
worth of data to be read from the SerialLite MegaCore function.
TDAV indicates the SerialLite MegaCore function regular data port can accept at
least one cycle of data.
THDAV indicates the SerialLite MegaCore function priority data port can accept at
least one packet of data. If this packet is placed into the last free buffer, the THDAV
is deasserted after the first write cycle of that packet. However, the packet can still
be completed, and is guaranteed to accept the whole packet with no loss of data (if
packet is less than or equal to 256 bytes). The THDAV signal is reasserted after a
new buffer becomes available. The system logic should only monitor THDAV at the
start of a packet.
RDAV indicates the SerialLite MegaCore function regular data port has available at
least one cycle of data.
RHDAV indicates the SerialLite MegaCore function priority data port has available at
least one cycle of data.

RVAL
RHVAL

Output Data valid. The data-valid signal is driven by the SerialLite MegaCore function, and
is present only on the receive side of the interface. When high, the data-valid signal
indicates valid data signals. The data-valid signal is updated on every clock cycle
where the data transfer enable signal is found to be asserted, and holds its current
value along with the data bus when the data transfer enable signal is found to be
deasserted. Invalid data signals, indicated by the data-valid signal being low, must
be disregarded. To determine whether new data has been received, the system logic
must qualify the data-valid signal with the previous state of the data transfer enable
signal.
RVAL is driven by the SerialLite MegaCore function to indicate that valid data is
being read on the regular data port.
RHVAL is driven by the SerialLite MegaCore function to indicate that valid data is
being read on the priority data port.

TSOP
THSOP

Input Start of packet. The start-of-packet signal is used to delineate the starting packet
boundary on the data bus. When the start-of-packet signal is high, it indicates that
the current data on the data bus is the first data of a new packet. The start-of-packet
signal is asserted on the first data cycle of every packet.
TSOP is driven by the system logic to start a new packet on the regular data port
(packet mode only).
THSOP is driven by the system logic to start a new packet on the priority data port.
RSOP is driven by the SerialLite MegaCore function to indicate that a new packet is
ready for reading on the regular data port (packet mode only).
RHSOP is driven by the SerialLite MegaCore function to indicate that a new packet
is ready for reading on the priority data port.

RSOP
RHSOP

Output

Table 3–2. Atlantic Interface Signals (Part 3 of 4)

Name Direction Description
3–10 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
TEOP
THEOP

Input End of packet (EOP). The end-of-packet signal is used to delineate the ending
packet boundary on the data bus. When the end-of-packet signal is high, it indicates
that the current data on the data bus is the last data of a packet. The word-empty
bus indicates the number of invalid bytes on the data bus when the end-of-packet
signal is asserted. The end-of-packet signal is asserted on the last data cycle of
every packet.
TEOP is driven by the system logic to end a packet on the regular data port (packet
mode only).
THEOP is driven by the system logic to end a packet on the priority data port.
REOP is driven by the SerialLite MegaCore function to indicate that the end of a
packet is being read on the regular data port (packet mode only).
RHEOP is driven by the SerialLite MegaCore function to indicate that the end of a
packet is being read on the priority data port.

REOP
RHEOP

Output

TERR
THERR

Input Error indicator. The error indicator indicates that the current packet is aborted and
should be discarded. The error indicator may be asserted at any time during the
current packet, but once asserted, it can only be deasserted on the clock cycle after
the end-of-packet signal is asserted.
TERR is driven by the system logic to indicate that the packet being transmitted on
the regular data port is invalid (packet mode only).
THERR is driven by the system logic to indicate that the packet being transmitted on
the priority data port is invalid.
RERR is driven by the SerialLite MegaCore function to indicate that the packet being
received on the regular data port is invalid (packet mode only).
RHERR is driven by the SerialLite MegaCore function to indicate that the packet
being received on the priority data port is invalid (only if the retry-on-error feature is
not enabled).

RERR
RHERR

Output

Table 3–2. Atlantic Interface Signals (Part 4 of 4)

Name Direction Description
Altera Corporation MegaCore Function Version 1.0.0 3–11
September 2004 SerialLite MegaCore Function User Guide

Functional Description
High-Speed Serial Interface

The high-speed serial interface (see Figure 3–7) always appears at the
external device pins.

Figure 3–7. High-Speed Serial Interface

The high-speed serial interface consists of the differential signals that
carry the high-speed data between the two ends of a link, as shown in
Figure 3–8.

Figure 3–8. High-Speed Serial Interface Connections

Status Transceiver
Control

Atlantic Interface
Transmit

Atlantic Interface
Receive

High-Speed

Serial Interface

MRESET_NCLK

SerialLite
MegaCore
Function

SerialLite

MegaCore

(Near)

SerialLite

(Remote)

 TX_OUT

RX_IN

RX_IN

TX_OUT

Function

MegaCore

Function

High-Speed Serial Interface
3–12 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
The high-speed serial interface signals are detailed in Table 3–3. The
signals required for a given configuration, as well as the appropriate bus
widths, are created by IP Toolbench.

Other Signals

Table 3–4 describes two miscellaneous signals.

Achieving the Desired Bandwidth

The bandwidth that can be realized by a SerialLite link depends on the
following:

■ Clock rate
■ Number of lanes
■ Features selected

Table 3–3. High-Speed Serial Interface Signals

Name Direction Clock Domain Description

TX_OUT[] Output System clock,
multiplied by 20

The transmit lane(s). These are outputs of the SerialLite
MegaCore function. Connect these to the RX_IN[] inputs of the
SerialLite MegaCore function on the remote end of the link. The
width of the bus is equal to the number of lanes specified. In a
multi-lane link, TX_OUT[0] corresponds to Lane 1. The number
of actual wires is twice the number of lanes, since each lane
consists of a differential pair of signals.

RX_IN[] Input Recovered clock The receive lane(s). These are inputs to the SerialLite
MegaCore function. Connect these to the TX_OUT[] outputs of
the SerialLite MegaCore function on the remote end of the link.
The width of the bus is equal to the number of lanes specified. In
a multi-lane link, RX_IN[0] corresponds to Lane 1. The
number of actual wires is twice the number of lanes, since each
lane consists of a differential pair of signals.

Table 3–4. Miscellaneous Signals

Name Direction Clock Domain Description

CLK Input System clock System clock signal, rising-edge sensitive. This is the clock
reference for the PLLs and the clock for the FPGA logic. It should
operate at a frequency 1/20 of the desired serial bit rate.

MRESET_N Input Asynchronous Master reset pin, active low. Asserting this signal brings the
SerialLite link down. Once asserted, deasserting this signal
causes the link to restart.
Altera Corporation MegaCore Function Version 1.0.0 3–13
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Clock & Data Rates

A SerialLite link can be characterized by a number of clock or data rates
or frequencies. Clarification of these various rates and what they are
called can help eliminate confusion.

System Clock & Bit Rate
A SerialLite link has two distinct clock rates: the system clock rate and the
bit rate. The system clock rate is the rate of the clock you drive directly via
the CLK input to the SerialLite MegaCore function. This clock controls the
FPGA logic and acts as a reference clock to the PLLs. The PLLs boost this
clock rate by 20 times to generate the bit rate, which drives the high-speed
serial lines. The Parameterize - SerialLite MegaCore Function wizard asks
you for the serial bit rate you want to use, and then reports to you the
system clock rate required to generate that bit rate. For example, if you
enter 3125 MHz as your desired bit rate, then you need to clock the CLK
signal at 156.25 MHz (see Figure 3–9).

Figure 3–9. Bit Rate & System Clock Frequency

Each lane moves data at the bit rate (Table 3–5 shows the bit rate values).
The overall bandwidth can be adjusted by changing the system clock rate,
but other system requirements may make that impractical. Even if
practical, the system clock rate cannot be set above 156.25 MHz (1/20 of
the maximum rated bit rate, 3.125 Gbps). Additionally, if the SerialLite
logic is being instantiated in a device that contains a lot of other logic or a
slower-speed device, the maximum attainable speed may be lower than
156.25 MHz. In these circumstances, an additional lane is needed to
increase bandwidth.

Table 3–5. Bit Rate Values (Mbps)

Minimum Maximum Default Description

500 3125 3125 This is 20 times faster than the system clock, and somewhat faster than the
effective data rate, depending on the features selected.
3–14 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Aggregate Bandwidth
The bit rate specifies the rate of data transmission on a single lane. In a
multi-lane configuration, the total available bandwidth is the single-lane
bit rate multiplied by the number of lanes.

Effective Data Rate
The bit rate sets the rate at which bits are sent across the high-speed serial
link. This is not equivalent to the effective data rate. For example, because
8B/10B encoding is used, each 10 bits of transmitted data corresponds to
only 8 bits of actual data.

The effective data rate can also be further reduced by other features such
as clock compensation, use of the priority port, and the retry-on-error
feature. These and other features affect the data rate because they use the
same link to transmit various control packets or priority packets in the
middle of data packets. While the effect of these features should not be
ignored, it may be very small.

The data rate can be further reduced by an inefficient implementation. In
particular, using small packets on a link with many lanes, or setting the
FIFO buffer sizes and flow control pauses such that the link spends too
much time pausing are examples of implementations that reduce the data
bandwidth. In these cases, you can improve bandwidth by making
adjustments to improve efficiency.

The relationships between the various rates are illustrated in Figure 3–10.

Figure 3–10. Clock Relationships

SerialLite

MegaCore

PLL
(x20)

System Clock Rate
(= 1/20 Bit Rate)

Bit Rate
(= 20 X System Clock Rate)

System

Logic

Effective Data Rate
(Less Than Bit Rate)

C
LK

Function

High-Speed
Serial Interface

Atlantic Interface
Altera Corporation MegaCore Function Version 1.0.0 3–15
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Scaling by Adding Lanes

Because each lane operates at the bit rate, you can increase bandwidth by
adding lanes. This is a simple way to scale the link during system design.
If adding a lane provides more bandwidth than needed, you can reduce
the system clock rate, mitigating possible high-speed design issues and
making it easier to meet performance. By setting an appropriate clock rate
and lane width, a desired aggregate bit rate can be achieved. The
aggregate bandwidth is reported in the Parameterize - SerialLite
MegaCore function wizard, as shown in Figure 3–11.

Figure 3–11. Aggregate Bit Rate

Table 3–6 shows the allowed lane count values.

Adjusting Frequency for Best Simulation

The SerialLite MegaCore function is implemented in Stratix GX devices,
using the ALTGXB transceivers. In order for the transceiver to be
simulated accurately cycle for cycle, the system clock rate must be
convertible to a clock period that is an integral number of picoseconds.
For example, 156.25 MHz corresponds to a period of 6,400 picoseconds,
and 156 MHz corresponds to a period of 6,410.256 picoseconds, which is
rounded to 6,410. In the latter case, the specified frequency and the
underlying period do not correspond exactly, and the simulation may
occasionally miss a byte. For this reason, best simulation is achieved by
using a clock rate (or bit rate) that results in a picosecond-integer period.

If you enter a bit rate that does not correspond to a picosecond-integer
period, then a checkbox is available that allows you to use the next
highest frequency with a picosecond-integer period. Table 3–7 shows the
adjustment options.

Table 3–6. Lane Count Values

Minimum Maximum Default Description

1 16 1 The number of lanes that are instantiated in the SerialLite MegaCore
function variation.
3–16 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
If you turn on the option, then that adjusted frequency is used. If you do
not turn on the option, then the frequency you entered is used, and
simulation could occasionally miss a byte.

1 The device always operates correctly, and never loses any bytes,
regardless of the frequency selected. Only simulation is affected.

Wire Delay

The SerialLite link has latency inherent in its operation. This latency
affects both the retry-on-error timeout value and the necessary sizes of
the receive FIFO buffers when flow control is used. But the overall link
latency must also account for the delay of the serial signals along their
medium, whether traces on boards or cables between boards. This is
referred to in the Parameterize - SerialLite MegaCore function wizard as
the wire delay. The phrase “wire delay” is used whether or not a wire is
physically used.

In order to ensure that the retry-on-error timeout and receive FIFO buffer
sizes are correctly set, you must specify the wire delay using a
nanosecond value. In a multi-lane implementation, if there are significant
differences between the lanes, use the worst-case (slowest) lane. This
value is then converted to the equivalent number of clock cycles for use
in latency calculations, and the results are reported in the Parameterize -
SerialLite MegaCore function wizard, as shown in Figure 3–12.

Table 3–7. Frequency Adjustment Options

Option Description

Enabled Ensures that the bit rate entered corresponds to a
picosecond-integer system clock period. If necessary, the
entered value is adjusted up to the closest bit rate with such
a correspondence. This is the default setting.

Disabled Makes no change to the bit rate entered. If the system clock
period is not a picosecond integer, simulation may
occasionally miss bytes. The device always operates
correctly and never misses bytes.
Altera Corporation MegaCore Function Version 1.0.0 3–17
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Figure 3–12. Wire Delay

Table 3–8 shows the allowed wire delay values.

Summary of Bandwidth-Related Settings

Table 3–9 summarizes the different ways you can change the bandwidth
of the SerialLite link.

Clock Compensation

The configuration of your system clock or clocks determines whether or
not you need to use clock compensation.

Table 3–8. Wire Delay Values

Minimum Maximum Default Description

0 N/A 2.5 The signal delay, in nanoseconds.

Table 3–9. Bandwidth-Related Settings

Setting Description

Bit rate Specifies the rate at which bits are sent on the high-speed
serial interface. Equal to 20× the system clock rate, and faster
than the effective data rate.

Automatically
adjust for best
simulation

Used to ensure that the bit rate chosen corresponds to a
picosecond-integer system clock period.

Lane count The number of lanes to be created. Each lane operates at the
specified bit rate.

Wire delay The propagation delay of a signal from when it is placed on the
TX_OUT pins of one end of the link to when it is received on the
RX_IN pins of the other end of the link.
3–18 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Clock Domains

The SerialLite internal logic contains two clock domains. The majority of
the logic is clocked by the system clock via the CLK signal. However, a
small part of the receiver logic is clocked by the clock signal recovered
from the received data stream. The received data has to cross from this
recovered clock domain into the system clock domain, as illustrated in
Figure 3–13. A FIFO memory is used to buffer the data as it crosses from
one domain to the other. Depending on the relationship between the
system clock and the recovered clock, compensation may be required to
ensure that no data is lost due to a frequency mismatch.

Figure 3–13. Receiver Clock Domains

Clock Configuration

The SerialLite protocol supports clock compensation if the application
needs it. Clock compensation is needed if the two ends of the link are
being clocked by different clock sources.

There are two configurations possible for clocking your link. The
Parameterize - SerialLite MegaCore function wizard clock compensation
selection is based on these configurations. By selecting the configuration
that corresponds to your system, clock compensation is either included or
not.

PLL

SerialLite
MegaCore

System Clock

Recovered Clock
Domain System Clock

Domain

Recovered
Clock

FPGA

Function

Atlantic Interface

High-Speed Serial Interface

Buffer
Altera Corporation MegaCore Function Version 1.0.0 3–19
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Single Clock Source
A single-clock configuration is typically used for a link where both ends
are on the same board or on two boards driven by the same system clock
(see Figure 3–14). Because both ends of the link use the same clock source,
no clock compensation is needed. If you are using this configuration,
select the Near end and far end use the same crystal option in the Clock
Configuration portion of the wizard. This is the default selection.

Figure 3–14. Single-Source Clock Configuration

Two Clock Sources
Designs often use a two-clock configuration when the two ends of the link
are on different boards, each having its own clock source (see
Figure 3–15). The two clock sources must have the same nominal
frequency, but may differ by a few hundred parts per million (ppm)
because of clock tolerances. Clock compensation is required in this
configuration to ensure that no data is lost on a system that is transmitting
slightly faster than the receiver is processing. If you are using this
configuration, select the Near end and far end use different crystals
option in the Clock Configuration portion of the wizard.

FPGA 1 FPGA 2

PLL

System Clock

PLL

SerialLite

MegaCore
Function

SerialLite
MegaCore

Function

Buffer

Atlantic Interface

High-Speed Serial Interface

Atlantic Interface

Buffer
3–20 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Figure 3–15. Independent Clock Sources

For this configuration, you can choose one of two clock tolerances:
100 ppm and 300 ppm. Make this choice based upon the clock sources
you are using. When you select the 100 ppm tolerance, the clock
compensation sequence is inserted less frequently, and clock
compensation has less impact on bandwidth. Tables 3–10 and 3–11 show
the clock compensation and tolerance options, respectively.

FPGA 1 FPGA 2

PLL

System Clock 1 System Clock 2

PLL

SerialLite
MegaCore
Function

SerialLite
MegaCore
Function

Buffer

Atlantic Interface

High-Speed Serial Interface

Atlantic Interface

Buffer

Table 3–10. Clock Compensation Options

Option Description

Near end and far
end use the same
crystal

Used when a single clock source is used for both ends of the
link. No clock compensation is implemented. This is the
default setting.

Near end and far
end use different
crystals.

Used when the clock sources for the two ends of the link are
independent, but of the same nominal frequency. Clock
compensation is implemented.
Altera Corporation MegaCore Function Version 1.0.0 3–21
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Lane Polarity & Order Reversal

The SerialLite protocol optionally allows the link to recover from some
connection problems. Lane polarity and lane order can be reversed
automatically if desired.

Lane Polarity

Each lane consists of a differential pair of signals. It is possible for the
positive and negative sides of this pair to be reversed because of layout
error or because it simplifies layout. Reversed is shown in Figures 3–16
and 3–17. The SerialLite logic always detects such a reversal.

Figure 3–16. Correct Lane Polarity

Figure 3–17. Reversed Lane Polarity

Table 3–11. Clock Tolerance Options

Option Description

300 ppm A clock compensation sequence is automatically inserted into the
serial stream every 1667 clock cycles. Available only if the Near
end and far end use different crystals setting has been selected
for clock configuration. This is the default setting.

100 ppm A clock compensation sequence is automatically inserted into the
serial stream every 5000 clock cycles. Available only if the Near
end and far end use different crystals setting has been selected
for clock configuration.

+ +

- -

+ +

- -
3–22 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
If desired, the SerialLite logic can compensate for such a reversed lane on
the receive side. This reversal occurs during link initialization, and
remains in place for as long as the link is active. Using this option adds
logic to the SerialLite logic implementation size.

1 If reversal is not selected, and if the link detects that the polarity
is incorrect, a catastrophic error is declared.

To configure the link to detect lane polarity errors but not to reverse the
logic, select the Test only option for Lane Polarity in the Link Start-Up
portion of the Parameterize - SerialLite MegaCore function wizard. This
is the default selection.

To configure the link to detect and automatically correct lane polarity
errors, select the Test and reverse option for Lane Polarity in the Link
Start-Up portion of the wizard. Table 3–12 shows the lane polarity
options.

Lane Order

It is possible that the order of lanes may be incorrect due to layout errors.
It may also be reversed (the most significant lane of one end of the link is
connected to the least significant lane of the other end) due to layout
constraints (shown in Figures 3–18 and 3–19). The SerialLite logic always
detects a lane order mismatch.

If selected as an option, the SerialLite logic can compensate for reversed
lane order on the receive side. This reversal occurs during link
initialization, and remains in place for as long as the link is active.

Table 3–12. Lane Polarity Options

Option Description

Test only Reversed polarity triggers a catastrophic error. This is the
default setting.

Test and reverse Reversed polarity is corrected at the receiver.
Altera Corporation MegaCore Function Version 1.0.0 3–23
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Figure 3–18. Correct Lane Order

Figure 3–19. Reversed Lane Order

If reversal is not selected and the link detects that the lane order is
incorrect, a catastrophic error is declared by the SerialLite MegaCore
logic.

Only reversed lane order can be corrected. If the lane order is scrambled,
as shown in Figure 3–20, the receiving end cannot unscramble it, and a
catastrophic error is declared by the SerialLite MegaCore logic.

Catastrophic errors are described in “Error Handling” on page 3–51.

Figure 3–20. Scrambled Lane Order

To configure the link to detect lane order errors but not to reverse the
logic, select the Test only option for Lane Order in the Link Start-Up
portion of the Parameterize - SerialLite MegaCore function wizard. This
is the default selection.

Lane 0

Lane 1

Lane 2

Lane 3

Lane 0

Lane 1

Lane 2

Lane 3

Lane 0

Lane 1

Lane 2

Lane 3

Lane 3

Lane 2

Lane 1

Lane 0

Lane 0

Lane 1

Lane 2

Lane 3

Lane 0

Lane 1

Lane 2

Lane 3
3–24 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
To configure the link to detect and automatically correct reversed lane
order, select the Test and reverse option for Lane Order in the Link
Start-Up portion of the wizard. Table 3–13 shows the lane order options.

Choosing Ports

The SerialLite MegaCore function provides two ports: a regular data port
and a priority data port. The ports operate differently, and have different
strengths. You can use one or the other or both ports. At least one of the
two must be used.

There are a number of settings that can be specified for each port. These
are summarized in Table 3–14 and described in more detail in the sections
that follow.

Table 3–13. Lane Order Options

Option Description

Test only Incorrect lane order triggers a catastrophic error. This is the
default setting.

Test and reverse Reversed lane order is corrected at the receiver. Scrambled
lane order triggers a catastrophic error.

Table 3–14. Available Port Settings

Setting Description

Data mode Regular data port only. Allows selection of streaming or
packet data.

Packet size testing Priority data port only. Depending on setting, determines
allowed maximum priority packet sizes.

Maximum packet
size

Priority data port only. Specifies the largest packet that is
received on the priority port.

Channel
multiplexing

Allows implementation of channel multiplexing and
specification of the number of channels to multiplex.

CRC Allows implementation of CRC and selection of various
CRC options.

Retry on error Priority data port only. Allows implementation of the retry-
on-error feature and specification of the retry timeout.
Altera Corporation MegaCore Function Version 1.0.0 3–25
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Regular Data Port

Use the regular data port when:

■ The lowest latency is required
■ Unlimited packet sizes are desired
■ Streaming data is required
■ The retry-on-error feature is not required

The regular data port operates in cut-through mode, which means that as
soon as data is received for transmission, it is transmitted without waiting
for an entire packet to arrive. This results in very low latency. It also
results in a smaller receive FIFO buffer. Table 3–15 shows the regular data
port options.

Priority Data Port

Use the priority data port when:

■ Certain data packets have higher priority than other data
■ You want to use the retry-on-error feature

If both regular and priority data ports are provided, then the data
delivered to the priority data port interrupts any data being transmitted
via the regular data port. This behavior is referred to as packet nesting,
because a priority data packet is nested within a regular data packet on a
serial link. No regular data port data is lost during transmission of the
priority packet. Once the priority data has been transmitted and no new
priority data is available, transmission of the regular data packet
resumes.

The priority data port operates in store-and-forward mode, which means
that no data is transmitted across the link until the entire packet has been
delivered through the Atlantic Transmit interface and stored in a buffer.
When the retry-on-error feature is not enabled, two packet buffers are
maintained. When the retry-on-error feature is enabled, eight packet
buffers are maintained.

Table 3–15. Regular Data Port Options

Option Description

Enabled Creates the signals and logic required to support a regular data port.
This is the default setting.

Disabled Does not create the signals and logic required to support a regular
data port. If this option is chosen, then a priority data port must be
created.
3–26 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
While a priority packet buffer is being filled, if there are no other full
priority packet buffers, regular data continues to be transmitted. Regular
data is only interrupted once a priority packet is ready for actual
transmission.

Packet size on the priority data port is limited to 256 bytes. The priority
data port cannot support streaming data. Table 3–16 shows the priority
data port options.

Streaming & Packet Data

The regular data port allows data to be formatted as a stream or in
packets. Streaming data has no beginning or end. It represents an
unending sequence of data bytes. Packets of data, by contrast, have a
well-defined beginning and end. The data source determines whether
streaming or packet data is used. For example, data from an antenna most
likely streaming; network traffic is most likely in packets.

If the source of streaming data cannot be paused, then any interruptions
to the serial stream of data may result in lost data. The following items
can interrupt the serial stream:

■ Priority packets (if used)
■ Flow control (if used, even if only implemented on the priority data

port)
■ Clock compensation sequences (if used)
■ Retry on error packet acknowledgments (if used)

For example, the existence of a priority port alongside the streaming
regular data port means that a priority packet interrupts the data stream
because of the packet nesting behavior. If the source of that data stream
cannot be paused, then any streaming data received while the priority
packet is being transmitted is lost. In general, for best fidelity, any
streaming data that can be interrupted should have a source that can be
paused.

Table 3–16. Priority Data Port Options

Option Description

Enabled Creates the signals and logic required to support a priority
data port.

Disabled Does not create the signals and logic required to support a
priority data port. If this option is chosen, then a regular data
port must be created. This is the default setting.
Altera Corporation MegaCore Function Version 1.0.0 3–27
September 2004 SerialLite MegaCore Function User Guide

Functional Description
The priority data port can only accept packet data because of its store-
and-forward architecture. Streaming data is not allowed on the priority
data port. Table 3–17 shows the data mode options for the regular data
port.

Packet Sizes

The two data ports differ in their packet size requirements. The nature of
the packets used in your application may affect your choice of which port
to use.

Maximum Packet Sizes

The regular data port does not have a limit on the size of the packets that
can be transmitted. The use of larger or smaller packets on the regular
data port does not affect the amount of logic or memory required to
implement the port.

The priority data port has a packet size limit of 256 bytes because of its
store-and-forward architecture. If your application has packets larger
than this, they must be partitioned into multiple 256-byte packets when
delivered to the priority Atlantic interface. These sub-packets can then be
reassembled into the original larger packet after being received on the
other end of the link from the remote Priority Atlantic interface.

1 The SerialLite MegaCore function does not perform any
partitioning or reassembly of packets. System logic must
perform these functions, as shown in Figure 3–21.

Table 3–17. Data Mode Options (Regular Data Port Only)

Option Description

Packet The regular data port expects data to arrive in packets,
marked by asserting TSOP at the beginning and TEOP at
the end of the packet. This is the default setting.

Streaming The regular data port expects data to be streaming. The
TSOP, TEOP, TMTY[], TADD[], TERR, RSOP, REOP,
RMTY[], RADD[], and RERR signals are not available on
the Atlantic interface.
3–28 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Figure 3–21. Breaking Up Large Priority Packets

Although the priority port packet size is limited to 256 bytes, a smaller
maximum packet size can be specified. The priority packet buffers are
sized to hold the biggest specified packet, so specifying a smaller packet
requires less memory resources in the FPGA. Table 3–18 shows the
allowed size values for priority data packets.

1 Only the maximum priority packet size is specified. Individual
packets can be any size up to and including this maximum size.

SerialLite
MegaCore

System

Logic

System

Logic

SerialLite
MegaCore

Chip 1 Chip 2

High-Speed Serial InterfacePartitioning Reassembly

Atlantic Interface Atlantic Interface

FunctionFunction

Table 3–18. Maximum Priority Data Packet Size Values

Minimum Maximum Default Description

2 256 32 The size, in bytes, of the largest priority
packet that is allowed in the SerialLite
implementation being created. Packets are
not required to be this size, and may be
smaller. Only available if the priority data port
has been enabled.
Altera Corporation MegaCore Function Version 1.0.0 3–29
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Packet Size Testing on the Priority Data Port

Because packet sizes are limited on the priority data port, the priority
packet buffers are built only big enough to hold the maximum packet
specified. If a packet is delivered that exceeds the maximum size, the
extra data is lost. The SerialLite MegaCore function is capable of testing
incoming packets to ensure that any oversize packets are flagged as an
error on the status interface.

As long as the maximum packet size is an even multiple of the bus width,
individual packets that are smaller than the specified maximum can still
be tested. If an oversize packet is received, it is discarded and bit 5 of the
status interface is asserted.

If packets are not tested for size, then any maximum packet size can be
specified. If an oversize packet is received, no error is flagged, and data
may be lost.

The Parameterize - SerialLite MegaCore function wizard manages this
choice for you. If you select to test packet size, then invalid packet size
choices are flagged as errors. If you select not to test packet size, you can
enter any packet size up to and including 256 bytes. Table 3–19 shows the
packet testing options for the priority data port.

Channel Multiplexing

Channel multiplexing allows a single SerialLite link to carry more than
one independent stream of data. Both the regular data port and the
priority data port support channel multiplexing.

Channel multiplexing can be useful for such structures as multi-queue
memories. Another use is in distinguishing system messages from
standard payload packets on the priority port.

Table 3–19. Packet Testing Options (Priority Data Port Only)

Option Description

Enabled Logic is created to test incoming data for oversize packets. Oversize
packets are discarded. Maximum packet size choices must be a
multiple of the data bus width. This is the default setting.

Disabled No logic is created to test incoming data for oversize packets.
Oversize packets are not discarded, and are missing data. Any
maximum packet size up to and including 256 bytes can be
specified.
3–30 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Up to 256 channels can be multiplexed on the regular data port, and up
to 16 channels can be multiplexed on the priority data port. You decide
independently for each port whether or not to enable channel
multiplexing.

Channel multiplexing tags a packet with a channel number. The channel
number is placed on the TADR or THADR bus for transmission, and is read
off of the RADR or RHADR bus on reception. No processing is done on the
channel number; the SerialLite MegaCore function simply passes the
address through to the other end of the link.

Packets to different channels on the same port cannot interrupt each
other. Once a packet for one channel has started, that packet must be
completed before a new packet for a different channel can be started.
Packets on the priority data port still interrupt packets on the regular data
port, regardless of channel multiplexing.

1 It is the responsibility of the transmitting system logic to
multiplex the different channels of data and create the channel
number. It is also the responsibility of the receiving system logic
to read the channel number and demultiplex the output data
accordingly. This is shown in Figure 3–22.

Figure 3–22. Using the Channel Multiplexing Feature

System
Logic

Channel 1

Source

Channel 2

Source

Channel n

Source

System
Logic

Channel 1

Destination

Channel 2
Destination

Channel n
Destination

 TDAT
(THDAT)

TADR
(THADR)

RDAT
(RHDAT)

RADR
(RHADR)

Chip 1 Chip 2

Atlantic Interface Atlantic Interface

Multiplex, Generate Channel Number High-Speed Serial Interface Read Channel Number, Demultiplex

SerialLite
MegaCore
Function

SerialLite
MegaCore
Function
Altera Corporation MegaCore Function Version 1.0.0 3–31
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Because the SerialLite MegaCore function does not actually do anything
with the channel number, it is possible for the transmitting system logic
to put any channel number desired on the address bus. For example,
Channel 1 might direct a packet to Channel 2. The address bus can also be
used to carry any other tag that might be required, as long as it is no more
than 8 bits on the regular data port or 4 bits on the priority data port. The
Parameterize - SerialLite MegaCore function wizard asks for a number of
channels to multiplex, so if a six-bit tag is desired, for example, then
specify 64 channels (=26). Table 3–20 shows the channel multiplexing
options.

Table 3–21 shows the channel count values for the regular data channel.

Table 3–20. Channel Multiplexing Options

Option Description

Enabled If selected for the regular data port, TADR and RADR buses are
created, and a number of channels from 2 to 256 can be
specified. If selected for the priority data port, THADR and
RHADR buses are created, and a number of channels from 2 to
16 can be specified. The width of the address buses is the
minimum required to handle the number of channels specified.
Channel multiplexing is specified independently for each port.

Disabled If selected for the regular data port, TADR and RADR buses are
not created. If selected for the priority data port, THADR and
RHADR buses are not created. Channel multiplexing is specified
independently for each port. This is the default setting.

Table 3–21. Regular Data Channel Count Values

Minimum Maximum Default Description

2 256 2 The number of channels that are
multiplexed through the Atlantic regular
data port. TADR and RADR buses are
created and sized with the number of
bits required to carry the maximum
channel number. For example, if 64
channels are specified, then the TADR
and RADR buses are 6 bits wide. Only
available if channel multiplexing is
enabled on the regular data port.
3–32 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Table 3–22 shows the channel count values for the priority data channel.

Data Integrity Protection: CRC

If you need error protection beyond that provided by 8B/10B encoding,
you may add cyclic redundancy code (CRC) checking to your packet. The
CRC is automatically generated in transmission, and is automatically
checked on reception. On the regular data port, a CRC check failure
results in the packet being marked as bad using the RERR signal on the
Atlantic interface. On the priority data port, a CRC check failure either
results in the packet being marked bad using the RHERR signal on the
Atlantic interface, or, if the retry-on-error feature has been enabled,
results in the resending of the packet in question. You decide
independently for each port whether CRC usage is enabled.

1 CRC is not available for the streaming mode on the data port.

16-Bit Versus 32-Bit

The SerialLite MegaCore function supports the use of both 16-bit and
32-bit CRC algorithms. You decide which CRC algorithm to use
independently for each port. The 16-bit algorithm generates a two-byte
result, and uses the polynomial,

G(x) = X16 + X12 + X5 + 1

The 32-bit algorithm generates a four-byte result, and uses the
polynomial,

G(x) = X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4
+ X2 + X + 1

Table 3–22. Priority Data Channel Count Values

Minimum Maximum Default Description

2 16 2 The number of channels that are
multiplexed through the Atlantic priority
data port. THADR and RHADR buses
are created and sized with the number
of bits required to carry the maximum
channel number. For example, if 12
channels are specified, then the TADR
and RADR buses are 4 bits wide. Only
available if channel multiplexing is
enabled on the priority data port.
Altera Corporation MegaCore Function Version 1.0.0 3–33
September 2004 SerialLite MegaCore Function User Guide

Functional Description
The 16-bit version provides excellent protection for packets smaller than
about 1K bytes. For larger packets, CRC-32 can be considered, but it
requires significantly more logic, especially on implementations
requiring many lanes. At 16 lanes, CRC-32 logic may constitute as much
as half of the logic of the entire SerialLite instantiation. Therefore CRC-32
should only be used when absolutely necessary.

1 Because of the 256-byte packet size limitation, CRC-32 is never
really needed on the priority data port (although it is available).

Half Duplex

If you want to reduce the amount of logic used for implementing CRC
logic, there are situations where you can cut it approximately in half. The
SerialLite protocol specifies a symmetric full-duplex link, where traffic is
passed in both directions. There may be applications, however, where the
traffic in one direction is qualitatively different from that in the other
direction. For instance, payload data may travel in one direction, with
system messages or acknowledgments coming in the reverse direction.

In such systems, you may only be concerned about the data integrity in
one direction. The Parameterize - SerialLite MegaCore function wizard
allows you to specify, for a given application, to generate a CRC on
transmission, but not to check on reception. Conversely, you can specify
to check a CRC on reception, but not to generate on transmission. It is
important that both ends of the link match each other. So if the near-end
logic generates CRC, then the far-end logic must check CRC, and vice
versa.

The wizard allows you to make this selection by asking which direction
you wish to protect with CRC. The default provides protection in both
directions. Alternatively, you can select to protect only the transmit (TX)
direction or the receive (RX) direction. You decide independently for each
port which directions you wish to protect.

Tables 3–23 through 3–25 show the different CRC options.

Table 3–23. CRC Options

Option Description

Enabled CRC logic is created. CRC usage is specified independently for each port.

Disabled CRC logic is not created. CRC usage is specified independently for each port. This
is the default CRC setting.
3–34 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Retry on Error

The SerialLite MegaCore function allows you to improve the bit error rate
of your data by using the retry-on-error feature. This feature is only
available on the priority data port. It provides for packets with errors to
be resent so that only good packets are delivered to the Atlantic receive
interface.

Table 3–24. CRC Type Options

Option Description

16-bit Generates a two-byte CRC. Adequate for packets of around 1K bytes or smaller.
CRC algorithm is specified independently for each port. Available on a given port
only if CRC usage is enabled for that port. This is the default algorithm setting once
CRC usage has been enabled.

32-bit Generates a four-byte CRC. Should only be used for packets larger than about 1K
bytes or when extreme protection is required, since it is resource-intensive. CRC
algorithm is specified independently for each port. Available on a given port only if
CRC usage is enabled for that port.

Table 3–25. CRC Direction Options

Option Description

Both directions Generates logic for generating and checking CRC. Available for both CRC-16 and
CRC-32. CRC protection direction is specified independently for each port.
Available on a given port only if CRC usage is enabled for that port. This is the
default direction setting once CRC usage has been enabled.

TX direction Generates logic for generating, but not checking, CRC. Match with a remote end of
the link that has CRC only in the RX direction. Available for both CRC-16 and CRC-
32. CRC protection direction is specified independently for each port. Available on
a given port only if CRC usage is enabled for that port.

RX direction Generates logic for checking, but not generating, CRC. Match with a remote end of
the link that has CRC only in the TX direction. Available for both CRC-16 and CRC-
32. CRC protection direction is specified independently for each port. Available on
a given port only if CRC usage is enabled for that port.
Altera Corporation MegaCore Function Version 1.0.0 3–35
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Retry-on-Error Operation

When the retry-on-error feature is enabled, all packets sent by the
transmitter are acknowledged by the receiver as having been received
good (ACK) or bad (NACK). The packet buffers in the transmitting logic
hold packets until they’ve been acknowledged. Once a packet has been
acknowledged as received good (ACK), it is released from the buffer so
that the buffer can be used for another packet. If a packet is
acknowledged as received bad (NACK), then that packet and all packets
sent after that packet are resent.

Up to eight packets awaiting acknowledgment can be held at once. If
more packets arrive while all eight buffers are occupied, then the priority
data port stalls until an acknowledgment is received, freeing up a buffer
for the next packet.

The retry-on-error operation proceeds as follows:

1. When the receiver receives a good packet, the packet is delivered to
the Atlantic interface and an ACK acknowledgment is sent back to
the transmitter.

2. Any data errors cause the packet to be acknowledged bad (NACK).
Once that happens, the receiver ignores all incoming data until it
receives the resent packet.

3. All packets are numbered internally. The receiver knows which
packet it expects next, so if the next expected packet has been
corrupted or lost, then the next received packet has the wrong
packet number, and the receiver requests a resend of the packet it
was expecting.

4. Each transmitter packet buffer has an associated timer. If an
acknowledgment (ACK or NACK) is lost or corrupted in transit, then
the timer expires. This causes a resend of the packet in question and
all subsequent packets.

5. If a lost acknowledgment is for a good packet (ACK), a resend occurs
despite the fact that it actually isn’t necessary. But the receiver
knows that it has already received that packet and discards the
duplicate.

6. The transmitter knows which packet it expects to be acknowledged
next. If the next acknowledgment is not for the expected packet,
then the transmitter infers that the expected acknowledgment was
lost and retransmits the packet in question and all subsequent
packets.
3–36 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
7. When a resent packet arrives at the receiver, if it also has errors, no
further NACK acknowledgment is generated. This prevents
bandwidth from being consumed by duplicate NACK messages.
After a single NACK message, the only possible ensuing
acknowledgment would be an ACK, indicating that the expected
resent packet was received as good. If the resent packet is not
received as good, the timer expires, causing the packet to be resent.

8. If the timer expires three times in succession, a link error is declared
and the link is restarted. You can control the timeout limit in the
Parameterize - SerialLite MegaCore function wizard, and it is good
practice not to set the timeout to be too long so the system does not
have to wait too long for such situations to resolve.

The steps outlined above ensure that exactly one good version of each
packet gets delivered to the Atlantic receive port and that all packets are
delivered in order. Any serious problems that make this impossible cause
the link to restart.

Figure 3–23 shows the retry-on-error operation.

Figure 3–23. Retry-on-Error Operation

Out of
Order

Good

In
Order

Send
NACK

Receive
NACK

Timeout
Expires

Empty
Buffer

Bad,
Out of
Order

No Already
NACKed?

Send ACK
Receive

ACK

Resend
Packet(s)

Buffer New
Packet

Send New
Packet

Transmitter Receiver

Receive
Packet
Altera Corporation MegaCore Function Version 1.0.0 3–37
September 2004 SerialLite MegaCore Function User Guide

Functional Description
If the retry-on-error feature is not selected, no packet acknowledgments
are generated or expected. Only two packet buffers are created, and there
are no timers associated with the packet buffers.

Table 3–26 shows the retry-on-error options for the priority data port.

Retry-on-Error Timeout Setting

Each packet buffer has a timer so that packets can be resent in the event
of lost or corrupted acknowledgment packets. The timeout value must be
set large enough to account for the time it takes for acknowledgments to
be generated and arrive. This delay is caused by the delay through the
SerialLite logic (the core latency) and latency of the link medium (the wire
latency). The Parameterize - SerialLite MegaCore function wizard sets the
minimum timeout value to ensure that the acknowledgments always
have enough time to arrive. The wizard displays the components of the
minimum timeout as shown in Figure 3–24.

Figure 3–24. Retry-on-Error Timeout Calculation

You can make the timeout longer than the minimum, although if it is too
long, the link sits idle waiting for the timeout to expire. Adding a few
clock cycles of margin to the minimum timeout is generally sufficient to
ensure robust operation. The maximum total timeout is 216 system clock
cycles.

Table 3–26. Retry-on-Error Options (Priority Data Port Only)

Option Description

Enabled Logic is created to acknowledge packets and resend
packets when errors occur. Eight transmit packet buffers
with timers are created. A timeout value can be selected.
Available only if the priority data port has been enabled.

Disabled Logic is not be created to acknowledge packets. Two
transmit packet buffers without timers are created. Available
only if the priority data port has been enabled. This is the
default setting.
3–38 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Table 3–27 shows the margin values for the retry-on-error timeout.

Flow Control

The SerialLite MegaCore function provides flow control as an optional
means of exerting back-pressure on a data source when data
consumption is too slow. Use it to ensure that the receive FIFO buffers do
not overflow.

1 The flow control is not needed to handle the situation where two
different clock sources are used on the transmitting and
receiving sides of the links; clock compensation handles that
without the need for flow control. Flow control is only needed
when the system logic on the receiving end of the link is reading
the data more slowly than the system logic on the transmitting
end of the link is sending data.

If flow control is not enabled and a receive FIFO buffer overflows, a link
error is declared, and the link is restarted. Link errors are described in the
section “Error Handling” on page 3–51.

The flow control feature in the SerialLite MegaCore function works by
having the receiving end of the link issue a PAUSE instruction to the
transmitting end of the link when a receive FIFO buffer threshold is
breached. The instruction causes the transmitter to cease transmission for
a specified pause duration. Once the pause has expired, transmission
resumes.

If the receive FIFO buffer is still in breach of the threshold when the pause
is about to expire, the receiver automatically renews the pause in time to
ensure that no data leaks out between pauses.

Table 3–27. Retry-on-Error Timeout Margin Values

Minimum Maximum Default Description

0 216 -n* 5 The number of system clock cycles
beyond the required minimum that the
retry-on-error circuitry waits before
automatically resending data. Available
only if the retry-on-error feature has been
enabled.

* n represents the required minimum
timeout.
Altera Corporation MegaCore Function Version 1.0.0 3–39
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Flow control suspends the flow of data through both the regular data port
and the priority data port, regardless of which port had the full receive
FIFO buffer.

Table 3–28 shows the flow control options.

Table 3–29 lists the options available for configuring flow control.

Using a Backup PAUSE Instruction

There is a small but finite possibility that the PAUSE instruction sent to the
transmitter may be lost or corrupted such that it won’t take effect. The
SerialLite MegaCore function allows you to specify a backup PAUSE
instruction, as described in Table 3–30. This creates a second threshold
above the main threshold. If the original PAUSE instruction takes effect,
this second threshold is never breached. If the original PAUSE instruction
does not take effect, then the second threshold is breached, and a second
PAUSE instruction is issued. The chances are extremely remote that both
PAUSE instructions would be corrupted (unless there was something
seriously wrong with the link).

Table 3–28. Flow Control Options

Option Description

Enabled Logic is created to implement flow control. The receive FIFO
buffer sizing choices include threshold considerations for
flow control.

Disabled Logic is not created to implement flow control. The receive
FIFO buffer sizing choices do not include any provision for
setting thresholds. This is the default setting.

Table 3–29. Flow Control Settings

Setting Description

Backup option Allows a backup threshold to be set as a fail-safe against
lost PAUSE instructions.

Triggering port Allows one or both ports to be used for triggering flow
control.

 Pause duration Specifies the duration of a flow control pause.
3–40 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Selecting the backup option results in a larger receive FIFO buffer and
slightly more logic being used.

Selecting the Trigger Port

Either or both of the data ports can be used to trigger flow control (see
Table 3–31), although, once triggered, both data ports are affected by the
flow control. Flow control increases the sizes of receive FIFO buffers. If
both data ports are implemented, then memory usage can be reduced if
your design requires only one of the ports to trigger flow control.

Table 3–30. Backup Pause Instruction Options

Option Description

Enabled A second FIFO buffer threshold is established, and logic is
created to send a second PAUSE instruction. Available only
if flow control is enabled.

Disabled No second FIFO buffer threshold is established. Available
only if flow control is enabled. This is the default setting.

Table 3–31. Flow Control Trigger Options

Option Description

Regular data port Trigger flow control when the regular data port receive FIFO
buffer breaches a threshold. Available only if flow control is
enabled and the regular data port is enabled. If the priority
data port is not enabled, then this is the only option allowed.

Priority data port Trigger flow control when the priority data port receive FIFO
buffer breaches a threshold. Available only if flow control is
enabled and the priority data port is enabled. If the regular
data port is not enabled, then this is the only option allowed.

Both data ports Trigger flow control when either the regular data port
receive FIFO buffer or the priority data port receive FIFO
buffer breaches a threshold. Available only if flow control is
enabled and both data ports are enabled. This is the default
setting if both data ports are enabled.
Altera Corporation MegaCore Function Version 1.0.0 3–41
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Selecting the Proper Pause Duration

Activation of flow control causes a pause in transmission whose duration
you can specify in terms of pause units. Each pause unit is two system
clock cycles. You can specify a pause duration from 1 to 255 pause units
(equivalent to 2 to 510 clock cycles). Set the pause duration based upon
your understanding of the rate at which your system logic consumes the
data received. If a pause is too long, then overall system bandwidth is
reduced. If a pause is too short, it may have to be renewed, which could
result in an overall pause that’s too long.

As an example, assume a theoretical pause needs to be 100 units long. As
a designer, you would not likely know that at design time, so you have to
use your judgment to pick a reasonable value. The effect of a 120-unit
pause would be to cause more delay than needed. However, an 80-unit
delay would result in the pause being renewed with a total of 160 units of
delay, even longer than the 120-unit pause.

Table 3–32 shows the flow control pause values.

The Receive FIFO Buffers

The receive FIFO buffers are used by the receiving end of the SerialLite
link to store data for presentation to the Atlantic interface and eventual
consumption by the system logic. The appropriate size of the FIFO
buffers depends on a number of factors. The Parameterize - SerialLite
MegaCore function wizard handles these considerations automatically.
The default FIFO buffers generated by the wizard work. You only need
consider the following items if you wish to adjust the size of the FIFO
buffers manually.

The width of the receive FIFO buffers is automatically set by the SerialLite
MegaCore function at two bytes per lane. The depth is the only parameter
that must be set in the wizard. The minimum FIFO buffer size depends
on a number of factors, but the maximum FIFO buffer size theoretically
allowed is 232 entries. No device can provide that much memory, so the
practical maximum is determined by the device resources available.

Table 3–32. Flow Control Pause Duration Values

Minimum Maximum Default Description

1 255 255 The number of pause units (and half the
number of) system clock cycles for
which the transmitter stops sending
data after it receives a PAUSE
instruction. Available only if flow control
has been enabled.
3–42 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Factors Affecting FIFO Buffer Size

The items described in Table 3–33 all have an impact on FIFO buffer size.
As you change these parameters in the Parameterize - SerialLite
MegaCore function wizard, you may notice that the FIFO buffer sizes
change. The FIFO buffer sizing decisions made by the wizard are
necessary for the correct operation of the link, given the choices you have
made. The wizard handles the impact of these factors automatically.

FIFO Buffer Structure

When flow control is not used, the FIFO buffer is structured as a single
block (Figure 3–25). When flow control is used, the FIFO buffer is
structured as two sections, referred to as the “threshold” and the
“headroom” (Figure 3–26 and Figure 3–27).

Table 3–33. Factors Affecting Receive FIFO Buffer Size

Factor Description

Flow control If flow control is enabled, FIFO buffer sizing changes dramatically to
account for the thresholds that need to be set. The entire set of sizing
options on the Parameterize - SerialLite MegaCore function wizard
screen depends on whether or not flow control is enabled.

Backup PAUSE instruction Using a backup PAUSE instruction with flow control increases FIFO
buffer size to accommodate the second threshold.

Pause duration When optimizing against starvation during flow control, the pause
duration affects the FIFO buffer size.

Optimizing against starvation The FIFO buffers can be sized to reduce the amount of idle time during
flow control. This setting is described in “Optimizing Against Starvation”
on page 3–48.

Priority packet size If the priority data port is enabled, an entire packet must fit in the
receive FIFO buffer.

Number of priority packets to be stored You can change the number of packets to be stored in the priority data
port receive FIFO buffer.

Wire delay and bit rate The wire delay and the bit rate change the wire latency, which must be
accommodated if flow control is used.

Lane width If the lane width changes, the width of the FIFO buffers changes,
meaning the number of entries must change to accommodate the
same amount of memory.

CRC The use of CRC affects latency, which impacts FIFO buffer size if flow
control is enabled.

Streaming vs. packet mode This setting affects whether CRC can be utilized, which in turn affects
latency.
Altera Corporation MegaCore Function Version 1.0.0 3–43
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Figure 3–25. FIFO Buffer Structure (Flow Control Not Enabled)

Figure 3–26. FIFO Buffer Structure
(Flow Control Enabled Without Backup Pause)

Depth set in

Width set automatically

SerialLite wizard

Width set automatically

Threshold

Headroom

Primary Flow
Control Threshold

Depth set in
SerialLite wizard

Depth set in
SerialLite wizard
3–44 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Figure 3–27. FIFO Buffer Structure (Flow Control Enabled With Backup Pause)

FIFO Buffer Thresholds
When flow control is enabled, a threshold is established for triggering
flow control. You control the size of this threshold. The Parameterize -
SerialLite MegaCore function wizard establishes a default that works, but
you can create a larger threshold if you desire. The benefit of a larger
threshold is that flow control occurs less often. The cost is the fact that
more memory resources are required, and meeting performance could be
more of a challenge.

If a backup pause is used, a second threshold is created (see Figure 3–27).
This threshold is automatically set by the wizard, and cannot be changed.
There is no reason to change it, and for that reason it is considered part of
the headroom above the main threshold. The only threshold you need to
control is the primary threshold that initiates flow control.

FIFO Buffer Headroom
When flow control is enabled, the SerialLite MegaCore logic monitors the
triggering receive FIFO buffer, and when a threshold is reached, issues a
PAUSE instruction. It takes some time for the PAUSE instruction to be
issued, traverse the connection, and for transmission to be stopped. It
takes more time for all data that has already been transmitted to be stored
in the receive FIFO buffer.

Width set automatically

Threshold

Primary Flow
Control Threshold

Depth set in
SerialLite wizard

Depth set in
SerialLite wizardBackup Threshold

Headro
om
Altera Corporation MegaCore Function Version 1.0.0 3–45
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Therefore, there must be a certain amount of space left in the receive FIFO
buffer above the threshold to hold the data that arrives during this delay.
This headroom has contributions from the core latency and the wire
latency. The Parameterize - SerialLite MegaCore function wizard
automatically calculates the minimum headroom, displaying the
components of that calculation (Figure 3–28). You can add more margin
to the headroom if you wish.

If a backup PAUSE instruction is desired, then the minimum headroom
must be effectively doubled (compare Figure 3–27 to Figure 3–26),
because there must be room to accommodate the primary PAUSE
instruction plus the backup PAUSE instruction, in case it’s needed.
Accommodations for the backup PAUSE instruction are automatically
handled by the wizard.

Minimum & Maximum Buffer FIFO Sizes

The maximum FIFO buffer size for either port is 232 entries. This is far
more memory than any device can provide, meaning that there is
effectively no limit to the FIFO buffer size within the bounds of available
resources.

The minimum FIFO buffer size requirements are different for the two
data ports. They are also heavily impacted by whether or not flow control
is enabled.

Minimum Regular Data Receive FIFO Buffer
If flow control is not enabled, then the minimum regular data port receive
FIFO buffer size is 16 entries (see Table 3–34).

If flow control is enabled, then there is no minimum threshold size (see
Table 3–35). However, you should pick a reasonable number to avoid
frequent triggering of flow control. The minimum headroom is
automatically calculated by the Parameterize - SerialLite MegaCore
function wizard based on core and wire latencies.

Table 3–34. Regular Data Receive FIFO Buffer Size Values (No Flow Control)

Minimum Maximum Default Description

16 232 16 Determines the number of entries that are built into the regular data
receive FIFO buffer. Available only if the regular data has been enabled.
Applies only if flow control is disabled or the regular data has not been
selected as a trigger for flow control.
3–46 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Minimum Priority Data Receive FIFO Buffer
The priority data port receive FIFO buffer must always be able to hold an
entire packet. This requirement is driven by the need to avoid deadlock
when both retry-on-error and flow control are used, but is always
enforced to simplify the SerialLite MegaCore function design.

If flow control is not enabled, then the minimum priority data port
receive FIFO buffer size is the size of one maximum priority packet but
not less than 16 entries (see Table 3–36).The number of entries required
for this depends on the number of lanes. This minimum is automatically
calculated by the Parameterize - SerialLite MegaCore function wizard.

If flow control is enabled, then the minimum threshold size must be large
enough to hold a maximum priority packet (see Table 3–37). The number
of entries required for this depends on the number of lanes. This
minimum is automatically calculated by the wizard. The minimum
headroom is also automatically calculated by the wizard based on core
and wire latencies (see Figure 3–28 on page 3–50).

Table 3–35. Regular Data Receive Threshold & Headroom Margin Values (Flow Control)

Minimum Maximum Default Description

0 232 -n* 5 The number of regular data receive FIFO buffer entries beyond the
required minimum that are provided for the threshold and headroom. The
threshold and headroom margins are independent. Available only if the
data port has been enabled. Applies only if flow control is enabled and
the regular data port has been selected as a trigger for flow control.

* n represents the required minimum depth.
Altera Corporation MegaCore Function Version 1.0.0 3–47
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Creating FIFO Buffers Larger Than Minimum

To reduce the incidence of flow control, or to increase margin against
overflow if flow control is not used, the receive FIFO buffers can be easily
enlarged by adding margin to the minimums established by the
Parameterize - SerialLite MegaCore function wizard. If flow control is not
used, the size of the regular data FIFO buffer is increased by directly
changing the size; the priority port FIFO buffer is increased by changing
the margin. If flow control is used, then the threshold and headroom are
adjusted by changing their respective margins.

Optimizing Against Starvation
When flow control is used, it is useful to balance the pause duration
against the threshold size. If a long pause duration is used with a FIFO
buffer that has a very small threshold, then flow control is easily
triggered, and the FIFO buffer is likely emptied out long before the pause
has expired. The FIFO buffer is therefore “starved,” since it has room for
more data but data transmission is still suspended. This is wasteful of
bandwidth, since the link is idle for no reason.

Table 3–36. Priority Data Receive FIFO Buffer Size Margin Values (No Flow Control)

Minimum Maximum Default Description

0 232 -n* 5 The number of priority data receive FIFO buffer entries beyond the
required minimum that are provided in the priority data receive FIFO
buffer. Available only if the priority data port has been enabled. Applies
only if flow control is disabled or the priority data port has not been
selected as a trigger for flow control.

* n represents the required minimum depth.

Table 3–37. Priority Data Receive Threshold & Headroom Margin Values (Flow Control)

Minimum Maximum Default Description

0 232 -n* 5 The number of priority data receive FIFO buffer entries beyond the
required minimum that are provided for the threshold and headroom. The
threshold and headroom margins are independent. Available only if the
priority data port has been enabled. Applies only if flow control is enabled
and the priority data port has been selected as a trigger for flow control.

* n represents the required minimum depth.
3–48 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
The size of the FIFO buffers can be optimized to avoid the situation where
a FIFO buffer is sitting empty with no data feeding it. The Optimize FIFO
buffer size to avoid starvation option automatically sets a threshold size
that minimizes this risk. Components that are taken into account are the
core and wire latencies and the pause duration. These are automatically
calculated by the Parameterize - SerialLite MegaCore function wizard,
and the components of the calculation are displayed (see Figure 3–29).

Because the priority data receive FIFO buffer may have a large minimum
size, determined by the maximum packet size, the FIFO may already be
larger than required for avoiding starvation if the pause duration is short.
Alternatively, optimizing against starvation may by itself create a FIFO
buffer larger than the minimum required by the packet size. The wizard
automatically creates the smallest FIFO buffer that satisfies both the
minimum size requirement and the starvation setting for the priority
receive FIFO buffer.

Table 3–38 shows the starvation optimization options.

Storing Additional Priority Packets
A very simple way to increase the size of the priority data port receive
FIFO buffer is to size it to hold multiples of the minimum packet size
using the Parameterize - SerialLite MegaCore function wizard (see
Table 3–39). There is no theoretical limit to the number of packets that can
be selected, but in practice this can increase memory usage quickly, and
make it harder to achieve performance.

Table 3–38. Starvation Optimization Options

Option Description

Enabled The FIFO buffer threshold sizing is automatically increased
to avoid starvation during flow control. Available only if flow
control is enabled. This is the default setting.

Disabled The FIFO buffer threshold sizing is not increased to avoid
starvation during flow control. Available only if flow control is
enabled.
Altera Corporation MegaCore Function Version 1.0.0 3–49
September 2004 SerialLite MegaCore Function User Guide

Functional Description
If flow control is disabled, this setting affects the FIFO buffer size directly.
If flow control is enabled, this setting affects the size of the threshold.

FIFO Buffer Size
The sizes of the FIFO buffers, when flow control is enabled, along with
the calculations of those sizes are displayed in the Parameterize -
SerialLite MegaCore function wizard (Figure 3–28 and Figure 3–29).
Figure 3–28 shows the case where optimization against starvation has not
been selected. In this example, the maximum packet size determines the
priority data receive FIFO buffer size.

Figure 3–29 shows the case where optimization against starvation has
been selected. In this case, the priority data receive FIFO buffer size is
dominated by the starvation setting, creating a large enough FIFO buffer
that the packet size has no impact.

Figure 3–28. FIFO Buffer Sizing (Flow Control Without Starvation Option)

Table 3–39. Number of Packets Stored in FIFO Buffer Values (Priority Data Port Only)

Minimum Maximum Default Description

1 N/A 1 Ensures that the FIFO buffer (if flow control is disabled) or the FIFO buffer
threshold (if flow control is enabled) is large enough to hold the specified
number of packets. Available only if the priority data port is enabled.
3–50 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Figure 3–29. FIFO Buffer Sizing (Flow Control With Starvation Option)

Error Handling

The SerialLite MegaCore function provides error-checking capabilities
and an interface for observing local errors. The error types are
categorized, and the effect of an error depends on the kind of error
encountered.

Error Types

The SerialLite MegaCore function has three levels of error:

■ Data error
■ Link error
■ Catastrophic error
Altera Corporation MegaCore Function Version 1.0.0 3–51
September 2004 SerialLite MegaCore Function User Guide

Functional Description
The causes and results of these errors are summarized in Table 3–40.

Table 3–40. Error Causes & Results

Error Type Causes Effects

Data ● Invalid 8B/10B code
detected

● Running disparity error
● CRC error (if CRC

implemented)
● Packet marked bad by

transmitting system logic
asserting the TERR signal
on the Atlantic interface
(regular data port only).

For a packet being delivered to
the regular data port, the RERR
signal on the Atlantic interface
is asserted for the packet.

For a packet being delivered to
the priority data port without the
retry-on-error feature, the
RHERR signal on the Atlantic
interface is asserted for the
packet.

For a packet being delivered to
the priority data port with the
retry-on-error feature, the
packet is acknowledged as
bad, causing the packet to be
resent. The RHERR signal does
not exist if the retry-on-error
feature is enabled.

Link ● FIFO memory overflow
● Loss of character alignment
● Loss of lane alignment
● Loss of signal
● Too many data errors in a

short amount of time
● A restart sequence is

detected from the other end
of the link

The link is brought down and
restarted.

Catastrophic ● Reverse polarity detected
and automatic polarity
reversal not implemented

● Reverse lane order
detected and automatic
lane reversal not
implemented

● Scrambled lane order
detected

Unrecoverable. The link does
not operate.
3–52 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Status Interface

The SerialLite MegaCore function provides a separate interface for
accessing error information, as shown in Figure 3–30. The information
provided through this interface reflects only the local side of the link. The
status of the remote end of the link is not reflected on the local status
interface because there is no mechanism to get the error information from
the remote end of the link to the local end of the link.

Figure 3–30. Status Interface

Much of the logic that generates these signals exists in the recovered clock
domain, but the signals are displayed in the system clock domain.
However, there is no FIFO memory to buffer the domain crossing.
Instead, most of the signals are metastability-hardened, and incur a two-
three-cycle latency.

SerialLite
MegaCore

Status Transceiver
Control

Atlantic Interface
Transmit

Atlantic Interface
Receive

High-Speed
Serial Interface

MRESET_NCLK

Function
Variation
Altera Corporation MegaCore Function Version 1.0.0 3–53
September 2004 SerialLite MegaCore Function User Guide

Functional Description
The status interface is detailed in Table 3–41.

Table 3–41. Status Interface Signals

Name Direction Description

STATUS_PORT[0] Output Link up. Indicates that the local side of the link has been
successfully initialized and is running. It is generated in the
recovered clock domain internally, but is displayed in the system
clock domain. Because the signal crosses domains and is
metastability-hardened, there is a two- to three-cycle latency for the
signal to be asserted and deasserted.

STATUS_PORT[1] Output Catastrophic error. Indicates that a catastrophic error was
detected. This signal is asserted the clock cycle after the error is
detected. It is generated in the recovered clock domain internally,
but is displayed in the system clock domain. Because this condition
causes the link to go into an unrecoverable state, this signal is not
metastability-hardened.

STATUS_PORT[2] Output Link error. Indicates that a link error was detected. This signal is
asserted high for one clock cycle when the link goes down. It is
generated in the recovered clock domain internally, but is displayed
in the system clock domain. Because the signal crosses domains
and is metastability-hardened, there is a two- to three-cycle latency
for the signal to be asserted and deasserted.

STATUS_PORT[3] Output Data error. Indicates that a data error was detected. This signal is
asserted high for one clock cycle for each data error detected.
Within one clock cycle, a single pulse occurs regardless of the
number of errors occurring on the data bus during that clock cycle.
It is generated in the recovered clock domain internally, but is
displayed in the system clock domain. Because the signal crosses
domains and is metastability-hardened, there is a two- to three-
cycle latency for the signal to be asserted and deasserted. In
addition, because of the domain crossing, two consecutive pulses
may occasionally merge into a single pulse. For this reason, use
this signal as a general indicator of the frequency of errors, but not
to collect accurate statistics.

STATUS_PORT[4] Output Oversize packet discarded. Used only when the priority data port is
enabled, and when priority packet testing has been enabled.
Indicates that an oversize packet was received at the priority data
port and was discarded. The signal is asserted high for one clock
cycle starting one clock cycle after the oversize packet was
detected. It is generated and displayed in the system clock domain,
and does not cross a domain boundary.

STATUS_PORT[15..5] Output Reserved.
3–54 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Transceiver Settings

The transceivers used for the TX_OUT and RX_IN signals can be
configured to adjust the electrical characteristics of the signals on the
differential pairs. Table 3–42 describes the different characteristics that
can be adjusted.

Transmitter & Receiver PLL Bandwidth

The Stratix GX transmitter PLL and receiver PLL in the transceiver block
offer a programmable bandwidth setting. The PLL bandwidth is the
measure of its ability to track the input clock and jitter. It is determined
by the -3-dB frequency of the closed-loop gain of the PLL.

A high-bandwidth setting provides a faster lock time and tracks more
jitter on the input clock source, which passes it through the PLL. This
helps reject noise from the voltage-controlled oscillator (VCO) and power
supplies. A low-bandwidth setting, on the other hand, filters out more
high frequency input clock jitter, but increases lock time.

Table 3–42. Transceiver Settings

Setting Description

Transmitter PLL bandwidth Adjusts the responsiveness of the transmitter
PLL to frequency changes

Receiver PLL bandwidth Adjusts the responsiveness of the receiver
PLL to frequency changes

Termination Adjusts the termination on the transmitter
differential pair

VOD Adjusts the output differential voltage

Pre-emphasis Adjusts the amount of pre-emphasis given to
the transmitted signal

Equalization Adjusts the amount of equalization applied to
the received signal

Signal loss detection Adjusts how lost signals are handled
Altera Corporation MegaCore Function Version 1.0.0 3–55
September 2004 SerialLite MegaCore Function User Guide

Functional Description
PLL bandwidth settings are made in the Parameterize - SerialLite
MegaCore function wizard. The -3-dB frequencies for these settings can
vary due to the nonlinear nature and frequency dependencies of the
circuit. You can adjust the bandwidth to fine tune and customize the
performance on specific systems. Tables 3–43 and 3–44 show the
transmitter and receiver PLL bandwidth settings.

Transmitter Termination

The Stratix GX transmitter buffer allows you to program the on-chip
differential termination resistor (see Table 3–45). The transmitter buffers
are current-mode drivers, so the output differential voltage (VOD)
depends on the transmitter termination value. The Parameterize -
SerialLite MegaCore function wizard allows you to make this selection.

Output Differential Voltage (VOD)

Stratix GX transceivers allow you to customize the output differential
voltage (VOD) to handle different length, backplane, and receiver
requirements. VOD is illustrated in Figure 3–31.

Table 3–43. Transmitter PLL Bandwidth Options

Low (default)

High

Table 3–44. Receiver PLL Bandwidth Settings

Low (default)

Medium

High

Table 3–45. Transmitter Termination Options

100 Ω (default)

120 Ω

150 Ω
3–56 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Figure 3–31. VOD (Differential) Signal Level

You can set the VOD values statically during configuration or you can
adjust them dynamically while the device is operating as shown in
Table 3–46. You make this choice using the Parameterize - SerialLite
MegaCore function wizard.

You can select the static VOD value using the Parameterize - SerialLite
MegaCore function wizard. The advantages of a static VOD value are
simplicity and fewer signals to be routed. The disadvantage of this mode
is that the VOD is set identically for all lanes, and cannot be changed
without regenerating another programming file.

Single-Ended Waveform

Differential Waveform

VA

VA

VB

VB

±VOD

+VOD

− VODVOD (Differential)
= VA − VB

VOD (Differential)

0-V Differential

Table 3–46. VO D Control Settings

Option Description

Use fixed VOD A single static selected value is used
for the VO D for all lanes. This is the
default setting.

Use VO D signal The TX_VODCTRL bus is created, with
three bits per lane. The VO D value is
determined by the value placed on
these signals, according to Table 3–45.
Altera Corporation MegaCore Function Version 1.0.0 3–57
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Alternatively, if dynamic adjustment is selected, you can dynamically
configure the VOD setting while the device is operating. You can set the
VOD value by asserting encoded values on the TX_VODCTRL bus, which is
instantiated in the transceiver control interface when you select this
option. This configuration allows you to make quick performance
evaluations of the various settings without needing to compile and
regenerate multiple configuration files. Another advantage of this option
is that it allows the VOD of each lane to be configured independently.

Table 3–47 shows the VOD settings available for each of the transmitter
termination options, as well as the encoded values to be used for dynamic
adjustment.

The VOD for the transmitter buffer cannot exceed 1600 mV. This voltage is
the saturation point of the transmitter buffer. Settings beyond this value
do not damage the buffer, but prevent the operation of the device from
being represented accurately.

Pre-Emphasis & Equalization

The programmable pre-emphasis module in each transmit buffer boosts
the high frequencies in the transmit data signal that may be attenuated in
the transmission medium. This maximizes the data eye opening at the far-
end receiver. Pre-emphasis is particularly useful in lossy transmission
media.

Table 3–47. VO D Settings & Encoded Values

100 Ω (mV) 120 Ω (mV) 150 Ω (mV) TX_VODCTRL[2..0]

400 480 600 000

800 960 1200 001

1000 (default) 1200 1500 010

1200 1440 011

1400 100

1600 101
3–58 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
The transfer function of a transmission line can be represented in the
frequency domain as a low-pass filter. Any frequency components below
the -3-dB frequency pass through with minimal losses. Frequency
components that are greater than the -3-dB frequency are attenuated. This
variation in frequency response yields data-dependant jitter and other
inter-symbol interference (ISI) effects. By applying pre-emphasis, the
high-frequency components are boosted, or in other words, pre-
emphasized, when transmitted. By applying equalization, the low-
frequency components are attenuated. This equalizes the frequency
response as seen at the receiver so that the difference between the low-
frequency and high-frequency components is reduced, which in return
minimizes the ISI effects from the transmission medium.

The programmable pre-emphasis settings can have one of six values. The
programmable equalizer settings can have one of five values. You should
experiment with the pre-emphasis and equalization values to determine
the optimal settings based on your system variables.

You can set the pre-emphasis and equalization settings statically during
configuration or you can adjust them dynamically while the device is
operating, as shown in Tables 3–48 and 3–49. You make this choice using
the Parameterize - SerialLite MegaCore function wizard.

Table 3–48. Pre-Emphasis Control Settings

Option Description

Use fixed pre-emphasis A single static selected value is used for the pre-
emphasis for all lanes. This is the default setting.

Use pre-emphasis signal The TX_PREEMPHASISCTRL bus is created, with
three bits per lane. The pre-emphasis value is
determined by the value placed on these signals,
according to Table 3–50.

Table 3–49. Equalization Control Settings

Option Description

Use fixed equalization A single static selected value is used for the
equalization for all lanes. This is the default setting.

Use equalization signal The RX_EQUALIZATIONCTRL bus is created, with
three bits per lane. The equalization value is
determined by the value placed on these signals,
according to Table 3–51.
Altera Corporation MegaCore Function Version 1.0.0 3–59
September 2004 SerialLite MegaCore Function User Guide

Functional Description
The advantages of a static pre-emphasis or equalization value are
simplicity and fewer signals to be routed. The disadvantage of this mode
is that the selected value is set identically for all lanes and cannot be
changed without regenerating another programming file.

Alternatively, if dynamic adjustment is enabled in the wizard, you can
dynamically configure the pre-emphasis or equalization setting while the
device is operating. This configuration is done by asserting encoded
values on the TX_PREEMPHASISCTRL and RX_EQUALIZATIONCTRL
buses, which are instantiated in the transceiver control interface when
you select this option. The encoded values are shown in Tables 3–50 and
3–51. This configuration allows you to make quick performance
evaluations of the various settings without needing to compile and
regenerate multiple configuration files. Another advantage of this option
is that it allows the pre-emphasis or equalization of each lane to be
configured independently of the other lanes.

Avoid pre-emphasis settings that, together with the VOD setting, yield a
value greater than 1600 mV. Settings beyond this value do not damage
the buffer, but prevent the operation of the device from being represented
accurately.

Table 3–50. Pre-Emphasis Encoded Values

Pre-emphasis setting TX_PREEMPHASISCTRL[2..0]

0 (default) 000

1 001

2 010

3 011

4 100

5 101

Table 3–51. Equalization Encoded Values

Equalization setting TX_EQUALIZATIONCTRL[2..0]

0 (default) 000

1 010

2 100

3 101

4 111
3–60 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Signal Detection & Signal Lost Threshold

The signal loss threshold detector senses whether the specified voltage
level exists at the receiver buffer. This detector has a hysteresis response
that filters out any high-frequency ringing that might be caused by inter-
symbol interference (ISI) or any high-frequency losses in the transmission
medium. If used, this feature allows the SerialLite MegaCore function to
decide whether or not valid signals are present on the inputs

Each lane has a programmable signal lost threshold differential voltage
level. Table 3–52 shows the four supported signal lost threshold settings,
which are set in the Parameterize - SerialLite MegaCore function wizard.
When the signal detector does not detect the signal, the SerialLite link is
restarted.

If you have an environment where the voltage thresholds might not meet
the lowest voltage threshold setting, you can disable the signal detection
module in the wizard, which makes the SerialLite MegaCore function
operate like there is always a signal available. Loss of signal is still
detected through other means, such as data errors or the inability to
initialize the link.

Table 3–53 describes the signal detection options.

Table 3–52. Signal Lost Threshold Options (mV)

530 (default)

700

740

840

Table 3–53. Signal Detection Options

Option Description

Enabled Signals with a differential voltage of less than 530 mV is
considered lost, and a link error occurs.

Disabled The internal flag defaults to indicate that a signal is always
present. This is the default setting.
Altera Corporation MegaCore Function Version 1.0.0 3–61
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Transceiver Control Interface

The SerialLite MegaCore function provides an interface to allow you to
control the VOD, pre-emphasis, and equalization settings of each lane
individually and dynamically. You have the independent option for each
of these characteristics to set the values either at configuration time or
dynamically via a three-bit-per-lane bus. If you select a static setting in
the Parameterize - SerialLite MegaCore function wizard, the control
signals are not created. All lanes have the same settings.

The transceiver control interface (see Figure 3–32) gives you access to the
signals needed to control the transceiver dynamically. If you select
dynamic control, a three-bit bus is created per characteristic per lane. The
values to be placed on these signals to achieve the desired settings are in
Tables 3–47, 3–50, and 3–51.

Figure 3–32. Transceiver Control Interface

If, for example, you select dynamic control of pre-emphasis on a 4-lane
link, 3 bits are created for each lane, resulting in a 12-bit bus for pre-
emphasis control. The least-significant 3 bits (2 - 0) correspond to the
controls for lane 1. The most-significant bits (11 - 9) correspond to the
controls for lane 4. In the latter case, the settings for lane four would be
read from the tables as if bits [11..9] were bits [2..0], so that a pre-emphasis
setting of 1 for lane 4 would be achieved by placing 001 on bits [11..9].

SerialLite
MegaCore

Status Transceiver
Control

Atlantic Interface
Transmit

Atlantic Interface
Receive

High-Speed
Serial Interface

MRESET_NCLK

Function
Variation
3–62 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
The control buses are described in detail in Table 3–54. These signals can
be used as if asynchronous, although their effects cannot be observed if
the link is not operating. The signals are intended for manual adjustment,
not real-time changes, so instantaneous response should not be expected.

Optimizing the Implementation

There are a number of steps that can be taken to optimize your design,
depending on your goals. The features selected in your SerialLite
configuration have a substantial impact on both resource utilization and
performance. Because of the large number of different combinations of
options that are available, it is impossible to characterize in general how
fast or how large a design will be. In addition, the performance of a
SerialLite link in isolation is different from the performance of the same
link instantiated alongside large amounts of other logic in a Stratix GX
device.

For the most part, the steps you take to improve performance or resource
utilization are similar to the steps you would take for any other design.
The following suggestions are intended to provide ideas, but should not
be considered an exhaustive list.

Table 3–54. Transceiver Control Interface Signals

Name Direction Description

TX_VODCTRL[lanes*3-1..0] Input VO D control bus. Only instantiated if dynamic
control for VO D is selected. Three bits are
assigned to each lane, with the least-
significant bits (that is, [2..0]) corresponding
to lane 1. Each three-bit group should have its
values set per Table 3–47.

TX_PREEMPHASISCTRL[lanes*3-1..0] Input Pre-emphasis control bus. Only instantiated if
dynamic control for pre-emphasis is selected.
Three bits are assigned to each lane, with the
least-significant bits (that is, [2..0])
corresponding to lane 1. Each three-bit group
should have its values set per Table 3–50.

RX_EQUALIZATIONCTRL[lanes*3-1..0] Input Equalization control bus. Only instantiated if
dynamic control for equalization is selected.
Three bits are assigned to each lane, with the
least-significant bits (that is, [2..0])
corresponding to lane 1. Each three-bit bus
should have its values set per Table 3–51.
Altera Corporation MegaCore Function Version 1.0.0 3–63
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Improving Performance

Performance is the factor that depends most on what other logic exists in
the device. If SerialLite is competing with other logic for routing
resources, inefficient routing could compromise speed. The following
sections describe some things that can be considered if speed is an issue.

Optimize for Speed Versus Optimize for Size
The Parameterize - SerialLite MegaCore function wizard provides an
option for gaining some speed at the expense of some resources. The
amount of improvement varies, but the resource cost is modest, so if you
are having trouble meeting performance, ensure this option is set for
speed.

Performance becomes more of a challenge for links with many lanes,
whereas conservation of resources tends to be more important for smaller
links. Therefore, in designs involving four or more lanes, the wizard sets
the default to optimize for speed; for designs having fewer than four
lanes, the default is set to optimize for size. Table 3–55 shows the
optimization settings.

Table 3–55. Optimization Settings

Option Description

Optimize for speed Various subtle aspects of the design
use more flip-flops to provide higher
speed. This is the default for designs
with four or more lanes.

Optimize for size Various subtle aspects of the design
use fewer flip-flops to conserve
resources. This is the default for
designs with fewer than four lanes.
3–64 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Feature Selection
The following features impact speed more significantly. Your system
may require some of these, but if any are optional or can be reconsidered,
this may help your performance. Before making any changes, verify that
the feature you want to change is in the critical speed path.

■ Lane count: running more lanes more slowly reduces the operating
frequency required (but uses more logic resources).

■ Packet mode: streaming mode operates faster than packet mode. In
general, streaming mode on the regular data port gives you the
fastest, smallest implementation.

■ CRC: the CRC generation and checking logic degrade performance
and latency. In particular, if you are using CRC-32, evaluate carefully
whether the extra protection over CRC-16 is really worthwhile,
because CRC-16 has less impact on speed.

■ Retry on error: the buffering and acknowledgment mechanisms can
impact speed.

■ Receive FIFO buffer size: large FIFO buffers increase fanout and may
require longer routing to extend further inside the device.

Running Different Seeds
If your first attempt at hitting performance is close but is not quite
enough, try running different placement seeds. This often yields a better
result. The Quartus II Design Space Explorer is also a useful tool for
improving speed. Refer to your Quartus II documentation for more
information on seed specification and the Design Space Explorer.

Limiting Fanout
Depending on the number of lanes and the size of memories chosen,
fanout can become significant. Limiting the fanout during synthesis
causes replication of high-fanout signals, improving speed. If high-fanout
signals are the critical path, limiting the fanout allowed can help. Refer to
your Quartus II documentation for more information on limiting fanout.

Floorplanning
The SerialLite MegaCore function does not come with any placement
constraints. The critical paths depend on where in the device the
SerialLite logic is placed as well as the other logic in the device. Standard
floorplanning techniques can be used to improve performance. Refer to
your Quartus II documentation for more information on floorplanning.
Altera Corporation MegaCore Function Version 1.0.0 3–65
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Minimizing Logic Utilization

The amount of logic required for a SerialLite link depends heavily on the
features chosen. The Parameterize - SerialLite MegaCore function wizard
displays an estimate of LE usage to help you select features with visibility
into the impact on LE utilization. This display is only an estimate and
does not necessarily change with every feature setting change; if you
want a more accurate measure of the logic required for your
configuration, you must synthesize the design.

The following features have a significant impact on logic usage:

■ Lane count: running fewer lanes at higher bit rates, if possible, uses
less logic (but places more of a burden on meeting performance).

■ CRC: significant savings can be made by eliminating CRC, or in
particular, moving from CRC-32 to CRC-16 in high-lane-count
designs. If you are using CRC-32, evaluate carefully whether the
extra protection over CRC-16 is really worthwhile, because CRC-16
uses far fewer resources.

■ Port selection: having two ports instantiated uses significantly more
logic than having one port. If you don’t need the nesting or retry-on-
error features of the priority data port, consider using channel
multiplexing on the regular data port to manage multiple streams
without using the priority data port. Alternatively, if you require the
retry-on-error feature and can forego packet nesting, you can
eliminate the regular data port and use only the priority data port,
with channel multiplexing allowing you to differentiate your data
streams.

■ Polarity reversal: if you have confidence that the SerialLite link
connection medium has the correct differential pair polarity, opting
to test polarity but not reverse it saves logic.

■ Packet mode: packet mode requires more logic than streaming mode
for data encapsulation. In general, streaming mode on the regular
data port gives you the fastest, smallest implementation.

■ Retry on error: this feature requires logic to generate
acknowledgments and keep track of the packet flow.

■ Flow Control: this feature requires logic to monitor the FIFO buffer
levels and to generate and act upon PAUSE instructions.
3–66 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Specifications
Minimizing Memory Utilization

The amount of memory required for a SerialLite link depends heavily on
the features chosen. To obtain a measure of the memory required for your
configuration, you must synthesize the design.

The following features have a significant impact on memory usage:

■ Lane count: this establishes the bus widths internally, and most
memories used scale almost directly with the number of lanes
selected. Running fewer lanes at higher bit rates, if possible, uses less
memory (but places more of a burden on meeting performance).

■ Port selection: having two ports instantiated uses significantly more
memory than having one port. If you don’t need the nesting or retry-
on-error features of the priority data port, consider using channel
multiplexing on the regular data port to manage multiple streams
without using the priority data port. Alternatively, if you require the
retry-on-error feature and can forego packet nesting, you can
eliminate the regular data port and use only the priority data port,
with channel multiplexing allowing you to differentiate your data
streams.

■ Receive FIFO buffer size: you can minimize memory usage by not
adding significant amounts of margin to the minimum specified
sizes, or by not making room for more than one priority packet (if the
priority data port is being used).

■ Flow control: this feature requires larger receive FIFO buffers.
■ Packet size: if you are using the priority data port, you can reduce the

size of your receive FIFO buffers and the amount of buffer space
required by reducing the maximum size of your priority packets.

■ Optimizing against starvation: this feature makes long pauses more
efficient by creating a larger receive FIFO buffer so that the receiver
has enough data to process during the pause. Turning off this feature
provides a smaller FIFO buffer, at the risk of less efficient operation,
depending on your application. If possible, reducing the pause
duration can restore some efficiency.

■ Pause duration: when you wish to optimize against starvation, you
can reduce the size of the receive FIFOs needed by shortening the
pause duration.

■ Retry-on-error: this feature requires eight packet buffers, as
compared to two packet buffers if the feature is not used.
Altera Corporation MegaCore Function Version 1.0.0 3–67
September 2004 SerialLite MegaCore Function User Guide

Functional Description
Initialization & Restart

Before the SerialLite link can operate, it must be initialized and trained.
The SerialLite training sequence can generally bring the link up in a few
hundred system clock cycles. If the link needs to be restarted during
operation, it can come back up in less than 100 cycles.

A link only restarts on its own due to a link error encountered during
operation. A hardware reset using the MRESET_N signal also causes the
link to restart once the reset has been deasserted.

When one end of the link is brought down by either of these means, it
brings the other end down by sending training sequences to the other end
of the link. The other end of the link restarts once it sees eight successive
training sequences.

1 While the initial training sequences are being received, they may
be processed through the SerialLite logic and presented at the
Atlantic interface. The result is that when a link error occurs, a
few cycles of meaningless data may be consumed just prior to
the link restarting.
3–68 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

Altera Corporation MegaC
September 2004
Chapter 4. SerialLite
Testbench
General
Description

You can simulate your design using IP Toolbench-generated VHDL and
Verilog HDL IP functional simulation models.

f For more information on IP functional simulation models, refer to the
Using IP Functional Simulation Models to Verify Your System Design white
paper located at www.altera.com.

Altera® provides models you can use for functional verification of the
SerialLite MegaCore® function within your design. A Verilog HDL
demonstration testbench, including scripts to run it, is also provided. This
demonstration testbench, used with the ModelSim®-Altera simulator
tool, demonstrates how to instantiate a model in a design. The
demonstration testbench stimulates the inputs and checks the outputs of
the interfaces of the SerialLite MegaCore function, demonstrating basic
functionality.

Testbench
Environment

The testbench (seriallite_tb) environment shown in Figure 4–1
generates traffic through the Atlantic™ port generators (atl_gen), sends
it through the SerialLite logic, loops the data back on the high-speed serial
interface, back into the receive side of the logic, and then checks the data
as received at the Atlantic™ interface (atl_mon). The SerialLite status bus
is monitored throughout the duration of the testbench by the status
monitor (stat_mon).
ore Function Version 1.0.0 4–1
Preliminary

Methodology Overview
Figure 4–1. SerialLite Testbench Environment

Note to Figure 4–1:
(1) The main reset generator shown in the figure simply drives the MRESET_N core input with a synchronous (to CLK)

reset.

Methodology
Overview

There are three basic steps to using the SerialLite testbench.

1. Create a SerialLite link configuration using the Parameterize -
SerialLite MegaCore function wizard.

2. Modify the list of simulation parameters in the
<variation name>_tb_params.txt file to reflect the simulations
you wish to perform.

3. Execute the run do <variation name>_tb.do file using ModelSim.

(IP Functional Simulation Model)

xcvr

phasex0

phasex15

Status
Monitor0

Status
Monitor1

Status
Monitor15

Data Port
ATL Gen

Priority Port
ATL Gen

Priority Port
ATL Mon

Data Port
ATL Mon

Main Reset
Generator
(mreset_n)

lane 8b10b0

lane 8b10b15

SerialLite
Core

seriallite_tb

sl_core

sl_top

Loopback

High-Speed
Serial Interface

Atlantic
Interface
4–2 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

SerialLite Testbench
The <variation name>_tb_params.txt file contains the parameters that
control the types of data, number of packets, and the size of packets. You
edit the values in this file to set up the specific simulation you wish to
perform. Changing the other parameters in the
<variation name>_tb_params.txt file may result in simulation failure.

The SerialLite testbench performs the following tests, if applicable:

■ The testbench waits for the main reset sequence to end.
■ The testbench waits for the SerialLite link to come up.
■ If the regular data port is enabled, the testbench begins to send data

from the data port Atlantic generator. The data Atlantic monitor
checks that the first data matches the first data sent from the
generator and so on, until all the data is sent.

■ If the priority data port is enabled, the testbench begins to send data
from the priority port Atlantic generator. The priority Atlantic
monitor checks that the first priority data matches the first priority
data sent from the generator and so on, until all the data is sent.

Once a monitor receives the last packet, the testbench finishes.

You can use the SerialLite testbench as a template for creating your own
testbench or modify it to increase the testing coverage. The tasks and
parameters in the testbench are described in the following sections.

Configuring the
Simulation

The simulation run is controlled by parameters. These parameters require
no recompilation, making them fast and easy to change. The parameters
are described in detail in the sections that follow.

The <variation name>_tb_params.txt file contains the list of
parameters and their values. By editing this list of parameters according
to the parameter descriptions below, you change how simulation
proceeds. Not all parameters are available for any given link. For
example, if you only instantiate the priority data port, editing the
parameter list for the regular data port has no effect on the simulation.

There can be only one parameter per line. If you edit the parameter, edit
only the value to the right of the equal (=) sign. If you inadvertently
change the value to the left of the equal sign, restore it to its original name
exactly, including case.

w Do not delete any parameters from or add any parameters to the
parameter list.
Altera Corporation MegaCore Function Version 1.0.0 4–3
September 2004 SerialLite MegaCore Function User Guide

Configuring the Simulation
Table 4–1 provides information about each parameter and its legal value.

Table 4–1. SerialLite IP Testbench Parameters (Part 1 of 2)

Parameter Minimum Maximum Default Description

ATLANTIC_TX_CLOCK_PERIOD 6400 50000 6400 This is the main SerialLite
MegaCore clock, which drives
the input CLK and the Atlantic
TX and RX clocks.
The resultant clock also drives
the ALTGXB transceiver. Thus,
this clock determines the data
rate of the high-speed serial
link. The link speed (in Mbps)
is determined as follows:
(1000000/<value>)*20

DATA_INC_PATTERN 0 1 1 For each packed on the regular
and priority data ports, the
count restarts at 0 at the
beginning of a new packet.
This parameter affects both
data ports. The current data
value is tracked separately for
each port. The count restarts
when the byte value is 8'hff.
When set to 0, the data
provided in packets is
determined by user input. See
the section “User Packet Data”
on page 4–9.

NUM_PRIORITY_PACKETS 1 (2^32)-1 10 The number of priority data
packets. Controls the number
of packets sent by the Atlantic
generator to the priority data
port.
Only applicable if the priority
data port is enabled.

NUM_DATA_PACKETS 1 (2^32)-1 10 The number of regular data
packets. Controls the number
of packets sent by the Atlantic
generator to the regular data
port.
Only applicable if the regular
data port is enabled and
packet mode is selected
4–4 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

SerialLite Testbench
Sending & Receiving Data Tasks

The testbench allows users to manipulate sending and receiving data
through tasks.

NUM_STREAM_TRANSACTIONS 1 (2^32)-1 12 The number of streaming
transactions. Controls the
number of transactions sent by
the Atlantic generator to the
regular data port. A transaction
is considered to be 256-bytes
of data.
Only applicable if the regular
data port is enabled and
streaming mode is selected.

PRIORITY_PACKET_LENGTH 1 byte 65535 bytes 10 bytes The priority data packet size.
Controls the number of bytes in
a packet sent by the Atlantic
generator to the priority data
port. If used, all packets are of
this size.
Applicable only if the priority
data port is enabled.
Note: The maximum packet
size supported by the priority
port without errors is 256
bytes. Setting the packet size
greater than 256 bytes results
in a testbench error.

DATA_PACKETS_LENGTH 1 byte 65535 bytes 256 bytes The regular data packet size.
Controls the number of bytes in
a packet sent by the generator
to the regular data port. If
used, all packets are of this
size.
Available only if the regular
data port is enabled and
packet mode is selected.

Table 4–1. SerialLite IP Testbench Parameters (Part 2 of 2)

Parameter Minimum Maximum Default Description
Altera Corporation MegaCore Function Version 1.0.0 4–5
September 2004 SerialLite MegaCore Function User Guide

Configuring the Simulation
Atlantic Generator

The Atlantic generator (atl_gen) features a send packet task
(send_pkt) that transmits data and priority packets into the SerialLite
MegaCore. The task also supports the streaming mode if the data port is
configured as such.

To invoke the send_pkt task, use the following syntax from within the
testbench:

seriallite_tb.atl_gen_dat_inst.send_pkt
(sop_ena, eop_ena, err_ena, 0, taddress,
tpktlength, user_data_control);

Table 4–2 describes the send packet task fields.

Table 4–2. Send Packet Task Field Descriptions (Part 1 of 2)

Field Location
in Task Field Valid Values Description

1 sop_ena 1'b0 or 1'b1 The sop_ena field determines if a
start-of-packet (SOP) is asserted at the
beginning of this packet. In packet
mode, set this to 1'b1. In streaming
mode, set this to 1'b0.

2 eop_ena 1'b0 or 1'b1 The eop_ena field determines if an
end-of-packet (EOP) is asserted at the
end of this packet. In packet mode, set
this to 1'b1. In streaming mode, set this
to 1'b0.

3 err_ena 1'b0 or 1'b1 The err_ena field determines if an
error (ERR) is asserted at the end of a
packet when EOP is asserted.
In streaming mode, set this to 1'b0. In
packet mode, set this to 1'b0. You can
optionally set it to 1'b1 to set the error
flag for that packet.

4 Reserved 0 Reserved for future use.

5 taddress 0 - 8'hFF (data)
0 - 4'hF (priority)

The taddress field sets the address
for the current packet for use in
channel-muxing mode. Set this to 0
when channel muxing is disabled.
4–6 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

SerialLite Testbench
Example

seriallite_tb.atl_gen_dat_inst.send_pkt
(1'b1, 1'b1, 1'b0, 0, 8'h0, 16'd256, 1'b0);

When invoked, the above example generates a 256-byte packet with the
Atlantic address field set to 0, and incrementing payload.

Atlantic Monitor

The Atlantic monitor (atl_mon) features a receive packet task
(rcv_pkt) that checks data and priority packets from the SerialLite
MegaCore. The task also supports the streaming mode if the data port is
configured as such. By default, the monitor is configured for packet
mode. To put the monitor into streaming mode, use a Verilog defparam
on the packet_mode parameter, and set this to 0.

Example

defparam atl_mon_dat_inst.packet_mode = 0;
// Streaming mode.

6 tpktlength 1 - 65535 (bytes) The tpktlength field sets the size of
the current packet being sent by this
task.
For the priority port instantiation of
ATLGEN, this length should not exceed
256-bytes to ensure error free
operation.

7 user_data_control 1'b0 or 1'b1 The user_data_control field
determines the data source for the
packet payload. When set to 1'0, the
payload defaults to incrementing
payload, starting at 0 at the start of
packet.
When set to 1'b1, you must pre-fill an
array with the packet contents to be
transmitted. This task is described in
detail in “User Packet Data” on
page 4–9.

Table 4–2. Send Packet Task Field Descriptions (Part 2 of 2)

Field Location
in Task Field Valid Values Description
Altera Corporation MegaCore Function Version 1.0.0 4–7
September 2004 SerialLite MegaCore Function User Guide

Configuring the Simulation
To invoke the rcv_pkt task, use the following syntax from within the
testbench:

seriallite_tb.atl_mon_dat_inst.rcv_pkt(err_ena,
0, raddress, rpktlength, user_data_control);

Table 4–3 describes the receive packet task fields.

Example

seriallite_tb.atl_mon_dat_inst.rcv_pkt
(1'b0, 0, 8'h0, 16'd256, 1'b0);

When this example is invoked, the next incoming packet is checked to see
if the packet is 256-bytes long of incrementing payload on address 0, with
no ERR set.

Table 4–3. Receive Packet Task Field Descriptions

Field Location
in Task Field Valid Values Description

1 err_ena 1'b0 or 1'b1 The err_ena field determines if the Atlantic
ERR signal is expected to be asserted at the
end of a packet when EOP is asserted.
In streaming mode, set this to 1'b0. In packet
mode, set this to 1'b0. You can optionally set it
to 1'b1 when the packet is expected to have
the error flag set.

2 Reserved 0 Reserved for future use.

3 raddress 0 - 8'hFF (data)
0 - 4'hF (priority)

The raddress field sets the expected
address for the current packet for use in
channel-muxing mode. Set this to 0 when
channel muxing is disabled.

4 rpktlength 1 - 65535 (bytes) The rpktlength field sets the expected size
of the current packet being received by this
task.

5 user_data_control 1'b0 or 1'b1 The user_data_control field determines
the data source for the packet payload
checking. When set to 1'0, the payload
checking defaults to incrementing payload,
starting at 0 at the start of packet.
When set to 1'b1, the user must pre-fill an
array with the packet contents to be
transmitted. This task is described in detail in
“User Packet Data” on page 4–9.
4–8 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

SerialLite Testbench
1 The send_pkt and rcv_pkt tasks are normally invoked using
a Verilog fork and join statement. Each task must finish
before invoking another similar task call; that is, you cannot fork
two send_pkt tasks on the same Atlantic generator
instantiation.

User Packet Data

If the DATA_INC_PATTERN parameter is set to 0, you can set the payload
of each packet to contain any byte value. To set the payload, invoke the
user_packet task before calling the send_pkt task. Once all the
payload bytes of the packet have been set, the send_pkt task, with the
user_data_control field set, uses the data contained in the internal
array for the payload. Do not call the user_packet task again until the
send_pkt task has completed the packet transfer, or else data corruption
may occur.

To invoke the user_packet task, use the following syntax within the
testbench:

seriallite_tb.atl_gen_dat_inst.user_packet
(user_data,byte_count);

Table 4–4. User Packet Task Field Descriptions

Field Location
in task Field Valid Values Description

1 User_data 8'h00 - 8'hFF Contains the payload
byte value.

2 Byte_count 16'h0000 -
16'hFFFF

Contains the byte
location count for the
payload byte.
Altera Corporation MegaCore Function Version 1.0.0 4–9
September 2004 SerialLite MegaCore Function User Guide

Configuring the Simulation
Example (5-byte packet)

seriallite_tb.atl_gen_dat_inst.user_packet(8'hFE,1
6'h0); // SOP
seriallite_tb.atl_gen_dat_inst.user_packet(8'hED,1
6'h1);
seriallite_tb.atl_gen_dat_inst.user_packet(8'hCA,1
6'h2);
seriallite_tb.atl_gen_dat_inst.user_packet(8'hBB,1
6'h3);
seriallite_tb.atl_gen_dat_inst.user_packet(8'h1E,1
6'h4); // EOP.
seriallite_tb.atl_gen_dat_inst.send_pkt(1'b1,
1'b1, 1'b0, 0, 8'h0, 16'd5, 1'b1);

When these tasks are invoked, a 5-byte packet with the payload
FEEDCABB1E is transmitted into the SerialLite Data port. Byte location 0
is the SOP, and byte location 4 is the EOP. The transmission order is from
byte count 0 and up.

Configuration of Status Monitors

The simulation includes a status port monitor for each bit of the status
port. The monitor becomes active on a change to one of the status port
bits. When active, the current value is checked against the expected value
for that port. If the expected value is different from the current value, the
monitor flags an error.

One status monitor per status bit is instantiated. To enable the monitor, set
the sp_en port for each monitor to 1. For example,

sp_en[4..0] = 5'b11111;

enables the monitor for bits 0-4 of the Status bus.

To set the expected value inside each monitor, invoke the set_expect
task. For example,

seriallite_tb.stat_mon_inst0.set_expect(1);

The only field in the set_expect task is the expected value for that
monitor. In this example, the expected bit value for status port bit 0
(stat_mon_inst0) is set to 1.

By default, the expected value inside each status monitor is 1'b0.
4–10 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

SerialLite Testbench
Special Simulation Configuration Settings

The SerialLite MegaCore contains two settings that have a reduced value
in simulation.

The internal counter that controls the duration of the digital resets to the
ALTGXB megafunction counts up to 20 in simulation. This overrides the
default value of 20,000.

The clock compensation value determines when the clock compensation
sequence is inserted into the high-speed serial stream (when clock
compensation is enabled). In simulation, to minimize the time it takes for
the sequence to occur, the value is always 100 cycles, independent of the
actual clock compensation time value (100 or 300 ppm).

Waveform Generation

The simulation allows VCD file generation if WAVEFORM is tick defined.
All signals are included in the dump file.

Example

Add `define WAVEFORM to the testbench or +define+WAVEFORM to
the simulator command line to create a VCD dump file.

Testbench Timeout

The testbench uses a maximum simulation time to guard against infinite
loops or stuck simulations. The default value of 15000000 system clock
cycles is probably sufficient for most simulation runs. If more time is
needed for a particularly long run, you can increase the WATCHTIME
value.

For example, inside the testbench, add

`define WATCHTIME 55000000
Altera Corporation MegaCore Function Version 1.0.0 4–11
September 2004 SerialLite MegaCore Function User Guide

Configuring the Simulation
Running a Simulation

A simulation script has been created that allows you to run a simulation
based on the simulation configuration you have chosen. To run the
simulation while in the ModelSim Tcl environment, first ensure that you
have set the Quartus® II project directory to be the working directory.

Execute the simulation run by typing the following command:

do <variation name>_tb.do

The testbench uses the file <variation name>_tb_params.txt as the
simulation parameter input file and creates a file <variation name>.log as
an output file.

1. Run ModelSim (vsim) to bring up the user interface.

2. Execute the simulation run.

Simulation Pass & Fail Conditions

The meaning of “pass” or “fail” can vary based on intent, so this section
clarifies what it means when a simulation run ends and failure is
reported.

The execution of a simulation run consists of the following components:

■ Creating data to be transported through the link
■ Verifying that the data arrived with or without errors
■ Verifying that the various protocols were honored in the delivery of

the data
■ Confirming that the state of the link is consistent.

The testbench concludes by checking that all of the packets have been
received. In addition, it checks that the Atlantic packet receivers
(atl_mon modules, one for data port and one for priority port) have not
detected any errors in the received packets. If no errors have been
detected, and all packets have been received, the testbench issues a
message stating that the simulation was successful.
4–12 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

SerialLite Testbench
If errors have been detected, a message states that the testbench has
failed. If not all packets have been detected, a message states that the
testbench is incomplete. The tb.exp_chk_cnt variable determines the
number of checks done to insure completeness of the testbench. In packet
mode, or when using the priority port, for each packet tested, the
testbench performs one completeness check. In streaming mode on the
data port, a check is registered every 256 bytes of data received by the
monitor.

In summary, the testbench checks the following:

■ Were all expected stimulus generated?
■ Did all expected packets arrive and was the data error-free?
■ If errors occurred on the data, did the SerialLite logic detect the

errors?
■ Were there any protocol errors?
■ Is there any evidence of the simulation running too long out of

control?

If any of those checks detect a problem, the simulation is reported as
failing. In a correctly operating testbench, the only reason for failing is the
detection of deliberately inserted errors. There is a distinction between a
simulation run failing and a test failing. If you insert errors and the errors
are detected, the simulation fails. However, the test was successful
because the errors were detected. For this reason, simulation failure is not
by itself an indication of a problem.
Altera Corporation MegaCore Function Version 1.0.0 4–13
September 2004 SerialLite MegaCore Function User Guide

Configuring the Simulation
4–14 MegaCore Function Version 1.0.0 Altera Corporation
SerialLite MegaCore Function User Guide September 2004

	SerialLite
	Contents
	About This User Guide
	Revision History
	How to Contact Altera
	Typographic Conventions

	Chapter 1. About This MegaCore Function
	Release Information
	Device Family Support
	Features
	OpenCore Plus Evaluation

	Performance

	Chapter 2. Getting Started
	System Requirements
	Design Flow
	Download & Install the SerialLite MegaCore Function
	Download the SerialLite MegaCore Function
	Install the SerialLite MegaCore Function Files
	Windows
	Linux & Solaris

	Directory Structure

	SerialLite MegaCore Function Walkthrough
	Create a New Quartus II Project
	Launch IP Toolbench
	Step 1: Parameterize
	Step 2: Set Up Simulation
	Step 3: Generate

	Simulate the Design
	Compile the Design
	Apply Constraints

	Set Up Licensing
	Append the License to Your license.dat File
	Specify the License File in the Quartus II Software

	Chapter 3. Specifications
	Functional Description
	OpenCore Plus Time-Out Behavior
	Link Consistency
	Interface Overview
	Atlantic Interface
	High-Speed Serial Interface
	Other Signals

	Achieving the Desired Bandwidth
	Clock & Data Rates
	Scaling by Adding Lanes
	Adjusting Frequency for Best Simulation
	Wire Delay
	Summary of Bandwidth-Related Settings

	Clock Compensation
	Clock Domains
	Clock Configuration

	Lane Polarity & Order Reversal
	Lane Polarity
	Lane Order

	Choosing Ports
	Regular Data Port
	Priority Data Port

	Streaming & Packet Data
	Packet Sizes
	Maximum Packet Sizes
	Packet Size Testing on the Priority Data Port

	Channel Multiplexing
	Data Integrity Protection: CRC
	16-Bit Versus 32-Bit
	Half Duplex

	Retry on Error
	Retry-on-Error Operation
	Retry-on-Error Timeout Setting

	Flow Control
	Using a Backup PAUSE Instruction
	Selecting the Trigger Port
	Selecting the Proper Pause Duration

	The Receive FIFO Buffers
	Factors Affecting FIFO Buffer Size
	FIFO Buffer Structure
	Minimum & Maximum Buffer FIFO Sizes
	Creating FIFO Buffers Larger Than Minimum

	Error Handling
	Error Types
	Status Interface

	Transceiver Settings
	Transmitter & Receiver PLL Bandwidth
	Transmitter Termination
	Output Differential Voltage (VOD)
	Pre-Emphasis & Equalization
	Signal Detection & Signal Lost Threshold
	Transceiver Control Interface

	Optimizing the Implementation
	Improving Performance
	Minimizing Logic Utilization
	Minimizing Memory Utilization

	Initialization & Restart

	Chapter 4. SerialLite Testbench
	General Description
	Testbench Environment
	Methodology Overview
	Configuring the Simulation
	Sending & Receiving Data Tasks
	Atlantic Generator
	Atlantic Monitor

	User Packet Data
	Configuration of Status Monitors
	Special Simulation Configuration Settings
	Waveform Generation
	Testbench Timeout

	Running a Simulation
	Simulation Pass & Fail Conditions

