
Bare Metal User Guide
2015.11.30

UG-01165 Subscribe Send Feedback

Introduction
This guide will provide examples of how to create and debug Bare Metal projects using the ARM® DS-5
Altera Edition included in the Altera® SoC Embedded Design Suite (SoC EDS) User Guide.

The Altera SoC EDS is a comprehensive tool suite for embedded software development on Altera SoC
devices. It includes the hardware abstraction library (HWLibs), ARM DS-5 Altera Edition (DS-5 AE), tool
chain, and examples for a Bare Metal development environment.

The DS-5 AE is a useful toolset that allows you to create Bare Metal applications within the DS-5 IDE,
configure, and execute it on the Altera SoC target board.

For more information, refer to the "Introduction to the SoC Embedded Design Suite" and "ARM DS-5
Altera Edition" sections in the Altera SoC Embedded Design Suite User Guide.

Refer to the additional guidelines, such as respective SoC Development Kit User Guide and USB-Blaster
User Guide when you go through the examples in this guide.

Related Information

• Cyclone V SoC Development Kit User Guide
• Arria V SoC Development Kit User Guide
• Arria 10 SoC Development Kit User Guide
• USB Blaster Download Cable User Guide
• Altera SoC Embedded Design Suite User Guide

Bare Metal Overview
Firmware applications intended to run without an operating system (OS) are referred to as Bare Metal
applications. In comparison with the user application, which is managed by an OS, a Bare Metal applica‐
tion can interface directly to the system hardware and run without an OS.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of
Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice.
Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information
and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=UG-01165
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20(UG-01165%202015.11.30)%20Bare%20Metal%20User%20Guide&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.altera.com/en_US/pdfs/literature/ug/ug_cv_soc_dev_kit.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_av_soc_dev_kit.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_a10_soc_dev_kit.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_usb_blstr.pdf
http://www.altera.com/literature/ug/ug_soc_eds.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 1: Bare Metal Application

The Bare Metal application can be invoked in one of many ways. In the following three scenarios, it is
invoked after the Preloader boot stage has completed the system hardware initialization and verified the
Bare Metal image or has been built as a Boot Module.

2 Bare Metal Overview
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Typical Bare Metal Application - when the Bare Metal application runs directly from the Preloader
Figure 2: Typical Bare Metal Application

• RTOS Bare Metal Application - when the Bare Metal application runs from an RTOS
Figure 3: RTOS Bare Metal Application

• Bootloader Bare Metal Application - when the Bare Metal application runs from the Bootlooder
Figure 4: Bootloader Bare Metal Application

The Altera SoC Embedded Design Suite (SoC EDS) User Guide provides HW abstraction Application
Programming Interfaces (APIs) to simplify Bare Metal application development.

Related Information

• AN 709 HPS SoC Boot Guide
For more information about boot stages.

• Minimal Preloader Example Project on page 57
For more information about the Bare Metal application built as a Boot Module.

• Altera SoC Embedded Design Suite User Guide

Prerequisites for the Bare Metal Development Environment
The following tools need to be installed before proceeding:

• Altera SoC EDS
• USB-Blaster driver

Note: The USB-Blaster must be connected to the board and Altera SoC EDS license file must be setup
correctly before proceeding.

UG-01165
2015.11.30 Prerequisites for the Bare Metal Development Environment 3

Bare Metal User Guide Altera Corporation

Send Feedback

https://www.altera.com/en_US/pdfs/literature/an/an709.pdf
http://www.altera.com/literature/ug/ug_soc_eds.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Altera SoC EDS provides the following components for a complete Bare Metal Software Development
Environment:

• ARM DS-5 Altera Edition

• ARM Compiler 5
• GNU Compiler Collection (GCC) Bare Metal Compiler

• HWLibs
• Mkpimage tool (required by BootROM)
• Mkimage tool (required by Preloader)
• SD card image tool
• Golden Hardware Reference Design (GHRD)

For more information, refer to the "Installing the Altera SoC Embedded Design Suite" and "ARM DS-5
Altera Edition" sections in the Altera SoC Embedded Design Suite User Guide.

Related Information
Altera SoC Embedded Design Suite User Guide

Bare Metal Compiler
The Bare Metal Compiler that is shipped with the Altera SoC EDS is the Mentor Graphics® Sourcery™

Code Bench Lite Edition. The compiler is a GCC-based arm-altera-eabi port. It targets the ARM
processor, it assumes bare metal operation, and it uses the standard ARM embedded application binary
interface (EABI) conventions. The bare metal compiler is installed as part of the Altera SoC EDS installa‐
tion.

There are 2 types of bare metal compilers provided:

• ARM Compiler
• GNU Compiler Collection (GCC)

ARM compiler is supported by the Full ARM DS-5 edition (for all ARM processors) that requires a
license, while the GCC is provided by DS-5 Altera Editions which is free.

For more information on the Bare Metal Compiler, refer to the "Bare Metal Compiler" chapter in the
Altera SoC Embedded Design User Guide.

Related Information
Altera SoC Embedded Design Suite User Guide

Bare Metal Development Flow
Developing SoC based Bare Metal applications involve dependencies from the FPGA generated design
tools and use of the Altera SoC EDS packaged tools for building and debugging the application.

A typical Bare Metal Development flow is shown below:

4 Bare Metal Compiler
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

http://www.altera.com/literature/ug/ug_soc_eds.pdf
http://www.altera.com/literature/ug/ug_soc_eds.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5: Typical Bare Metal Flow

Using DS-5 AE to Create and Manage Bare Metal Projects
Bare Metal application project can be created using DS-5 AE and compiled with ARM or GCC compiler.
The application can be created to run from various target such as On-Chip RAM (OCRAM) or external
memory.

The following sections will guide you through how to create, build, load and debug a simple bare metal
project named "Hello World" on Cyclone V SoC Development Kit using the ARM compiler:

• To run from OCRAM
• To run from SDRAM

Note: For the GCC compiler, you can import an existing bare metal project example compiled using GCC
compiler or refer to "GCC Bare-Metal Project Management" to create a simple C project manually.

Related Information

• GCC Bare-Metal Project Management
• Getting Started with Bare Metal Project Management

Simple Bare Metal Project Using On-Chip-RAM
In the following sections, you are creating, building, loading, and debugging a simple "Hello World"
application project to run from OCRAM using ARM compiler.

Related Information
Altera SoC Embedded Design Suite User Guide

UG-01165
2015.11.30 Using DS-5 AE to Create and Manage Bare Metal Projects 5

Bare Metal User Guide Altera Corporation

Send Feedback

http://www.alterawiki.com/wiki/SoCEDSGettingStarted#GCC_Bare-Metal_Project_Management
http://www.alterawiki.com/wiki/SoCEDSGettingStarted#Getting_Started_with_Baremetal_Project_Management
http://www.altera.com/literature/ug/ug_soc_eds.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Create Project

Before you begin

In Windows, go to Windows > All Programs > ARM DS-5 > Eclipse for DS-5 to open the ARM DS-5
tool. Select a workspace before you begin. If it is not already selected, change to C/C++ Perspective,
located at the top right tabs of DS-5.

1. Create a new C project by selecting File > New > C Project.
2. Select Project Type as "Hello World ANSI C Project" and Toolchains as "ARM Compiler 5 (DS-5 built-

in)" and enter a unique project name in the Project Name field. For example, bare-metal-hello-
world-01.

Figure 6: Creating C Project of Selected Type

6 Create Project
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The DS-5 is supplied with two versions of the ARM Compiler for compiling bare metal applica‐
tions. ARM Compiler 5 supports all ARM architectures except ARMv8. ARM Compiler 6
supports architectures ARMv8 and ARMv7-A, as well as alpha support for architectures
ARMv7-R, ARMv7-M and ARMv6-M. For Altera SoC FPGA, ARM Compiler 5 is required.

Both versions of ARM Compiler are license managed and not all editions of DS-5 include a
license for it.

For any licensing information, please refer to the "Licensing" chapter in the Altera SoC EDS User
Guide.

3. Select Finish.
The source code for bare-metal-hello-world-01.c appears in the editor view.

Figure 7: Bare Metal "Hello World - 01" Code Snippet

Create New Scatter File to Locate the Bare Metal Application in the OCRAM

1. Create a scatter file. Right click on the project, and select "New > Other...", then "Scatter File Editor >
Scatter File".
The scatter file enables you to specify the memory map of an image to the linker using a description in
a text file. It is used by the ARM compiler linker to determine the placement of the program in the
target memory.

UG-01165
2015.11.30 Create New Scatter File to Locate the Bare Metal Application in the OCRAM 7

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8: Creating Scatter File

2. Select the project name, bare-metal-hello-world-01, and enter the scatter file name, like
scatter_OCRAM.scat

8 Create New Scatter File to Locate the Bare Metal Application in the OCRAM
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 9: Scatter File Setting

3. Select Finish.
The new file automatically appears in the Project Explorer view.

4. In the scatter_OCRAM.scat editor view, enter the following when targeting a Cyclone V or Arria V
device:

OCRAM 0xFFFF0000 0x10000
{
APP_CODE +0
{
* (+RO, +RW, +ZI)
}
ARM_LIB_STACKHEAP 0xFFFF8000 EMPTY 0x8000 ; Application help and stack
{ }
}

UG-01165
2015.11.30 Create New Scatter File to Locate the Bare Metal Application in the OCRAM 9

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The linker script instructs the linker on how to link the application:

• Defines OCRAM base address (0xFFFF0000) and size (0x10000)
• Loads all application sections in the OCRAM
• Allocates a maximum of 32 KB (0x8000) for stack and heap starting from address 0xFFFF8000

The parameters can easily be changed for targeting Arria 10 devices, where there are 256 KB of
OCRAM located at 0xFFE00000.

5. Select the Regions/Sections tab, located just below the scatter file to show what the memory map looks
like.

Figure 10: Scatter File Regions

6. Select File > Save to save the modifications.
7. After the scatter file has been created in the project, it needs to be associated with the project

properties. Select the project name in the Project Explorer view and right-click to select
Properties.

8. Go to C/C++ Build > Settings > Tool Settings > ARM Linker 5 > Image Layout.
9. In the Scatter file (--scatter) text field, browse to the newly created scatter file which should now be in

the project folder.
10.Select Apply and then OK.

10 Create New Scatter File to Locate the Bare Metal Application in the OCRAM
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11: Scatter File Location Setting

Build and Debug the Project

1. Then, right click on the project and select "Build Project".
The “Debug” build directory will be created and the compiled object modules will be placed there.

UG-01165
2015.11.30 Build and Debug the Project 11

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12: Bare Metal "Hello World - 01" Built Done

2. To download and debug the program, select Run > Debug Configurations.
3. Right click on DS-5 Debugger and select New to create a new debug configuration.

12 Build and Debug the Project
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13: New Debug Configuration

4. In the Connection tab, select Altera > Cyclone V SoC (Single Core) > Bare Metal Debug > Debug
Cortex-A9_0 and select "USB-Blaster" from the Target Connection pull-down menu.

UG-01165
2015.11.30 Build and Debug the Project 13

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14: New Debug Configuration Target Connection Setting

5. Select an available Bare Metal Debug Connection by clicking Browse.
This will return a list of the available debug connections.

Figure 15: Connection Browser

6. Select the hardware and then click Select. Change the name of the configuration from "New_Configu‐
ration" to "bare-metal-hello-world-config", and select Apply.

14 Build and Debug the Project
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 16: Bare Metal Hello World Config Connection Settings

7. Go to the Files tab and select the application to download by clicking “Workspace” and select the
object module that was built, bare-metal-hello-world-01.axf.
It should be in the Debug folder within the project. Make sure that “Load symbols” is selected, and then
click on Apply.

UG-01165
2015.11.30 Build and Debug the Project 15

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17: Bare Metal Hello World Config Files Settings

8. Go to the Debugger tab and make sure that under Run control, Debug from symbol is set to "main".

16 Build and Debug the Project
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18: Bare Metal Hello World Config Debugger Settings

9. Select Debug to load and debug the application.
It runs a query to change to the DS-5 Debug Perspective. Select Yes.

Figure 19: Confirm Perspective Switch

10.It switches to the DS-5 Debug Perspective and then download and begin to run the applica‐
tion.
The program stops at main and waits there. In the Commands view, notice the entry point is
0xFFFF0000, which is the start address specified in the scatter file for the on-chip RAM.

UG-01165
2015.11.30 Build and Debug the Project 17

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 20: OCRAM Debug Stop at Main

11.Click the Step Over Source Line icon or press F6.
12.Then "Step" again.

The output appears on the App Console view.

18 Build and Debug the Project
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 21: "App Console" Output

13.Select Continue to exit out of the application.
14.Create a breakpoint by double clicking on the left margin of the bare-metal-hello-world-0.1.c

Source view. If the Breakpoints view is not shown, then open it by selecting: View > Show
View > Breakpoints.

UG-01165
2015.11.30 Build and Debug the Project 19

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 22: Debug Breakpoint Setup

Preloader
The Preloader is a boot-strap program that configures some components of the board including the
memory controller during start up. It normally runs automatically if it were burned into one of the Flash
devices on the board.

For testing purposes or before the Preloader has been burned into Flash, the Preloader can be run by
downloading and executing it from the DS-5.

Loading and Running the Default Preloader

There are a few options for running the Preloader.

• It can be ran through a DS-5 command script.
• It can be imported into a DS-5 project and launched similarly to any other Bare Metal application.
• It can be launched by the DS-5 Run Control (Debug Control) independent from the DS-5 projects.

This section demonstrates how the preloader is launched independently from the DS-5 project for Cyclone
V SoC Development Kit. To optionally import the Preloader into a DS-5 project, refer to the “Importing
Preloader into a DS-5 Project” section.

This process uses the Run Configuration (Debug Configuration) of DS-5 to download and execute the
Preloader.

1. To begin, create a new Debug Configuration. Run > Debug Configurations.
2. Select DS-5 Debugger and click on New icon, which is located just above the "type filter text" field.

20 Preloader
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This creates a new Debug Configuration named “New_configuration”. Change the name in the Name
field to something like “RunPreloaderDefault”.

3. On the Connection tab, select Altera > Cyclone V SoC (Single Core) > Bare Metal Debug > Debug
Cortex-A9 and then select "USB-Blaster" from the Target Connection pull-down menu.

Figure 23: RunPreloaderDefault Target Connection Setting

4. To select the physical debug connection, after the Connections field, click on Browse to select the
specific Debug Hardware connection.

Note: If there is only one debugger connected, then only one will show up in the list (as shown).

UG-01165
2015.11.30 Loading and Running the Default Preloader 21

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 24: Connection Browser

Figure 25: RunPreloaderDefault Connection Settings

5. Select the Files tab and use “File System…” to browse to the Preloader image (“u-boot-spl”).

22 Loading and Running the Default Preloader
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Preloader image can typically be found in the following location: <SoC EDS installation folder>\
embedded\examples\hardware\cv_soc_devkit_ghrd\software\preloader\uboot-

socfpga\spl\u-boot-spl.

Note: Uncheck the “Load symbols” option.

Figure 26: RunPreloaderDefault Files Settings

6. On the Debugger tab, select “Debug from Entry Point” under Run Control and select Execute
debugger commands to enable the following commands:

• Run
• Pause 1s
• Interrupt
• Quit

UG-01165
2015.11.30 Loading and Running the Default Preloader 23

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 27: RunPreloaderDefault Debugger Settings

7. Select Apply, Debug, and then "Yes" to switch to the DS-5 Debug perspective, if queried.

Importing Preloader into a DS-5 Project

Instead of loading and running the default preloader directly, as described in the "Loading and Running
the Default Preloader" chapter, you can import the Preloader executable (u-boot-spl) into your project
within your workspace and browse to it by clicking on Workspace, as shown in the following sections.
This isolates your project from any changes that you may make to the default preloader.

Import Preloader

Before you begin

To do so, first you have to import the Preloader into your project.

1. Right click on the project and select Import. Then select General > File System and click Next when
you are done.

24 Importing Preloader into a DS-5 Project
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 28: Import File System

2. Browse to the Preloader executable (u-boot-spl) or enter the full path to the directory, for example:
<SoC EDS installation path>\embedded\examples\hardware\cv_soc_devkit_ghrd\
software\preloader\uboot-socfpga\spl.

3. Check the box next to the file name and then select Finish.

UG-01165
2015.11.30 Import Preloader 25

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 29: Import u-boot-spl

4. Make sure the newly imported file is shown in the Project Explorer.

26 Import Preloader
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 30: u-boot-spl file in Project Explorer

Create New Debug Configurations and Debug Preloader

1. Select "USB-Blaster" from the Target Connection pull-down menu and then select an available Bare
Metal Debug Connection by clicking Browse.

UG-01165
2015.11.30 Create New Debug Configurations and Debug Preloader 27

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 31: Run Preloader Hello Connection Settings

2. On the Files tab, select Workspace and browse to the project and then the Preloader file “u-boot-
spl”.

3. Uncheck the check box next to "Load Symbols".

28 Create New Debug Configurations and Debug Preloader
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 32: Run Preloader Hello Files Settings

4. On the Debugger tab, select “Debug from Entry Point” under Run Control and select Execute
debugger commands to enable the following commands:

• Run
• Pause 1s
• Interrupt
• Quit

UG-01165
2015.11.30 Create New Debug Configurations and Debug Preloader 29

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 33: Run Preloader Hello Debugger Settings

5. Select Apply and then Debug, then “Yes” to switch to the DS-5 Debug perspective, if queried.
Figure 34: Confirm Perspective Switch

6. DS-5 AE should load and run the Preloader in the on-chip RAM, similarly to how the simple Bare
Metal example is ran. This initializes the SDRAM memory controller and then stop and wait.
The display should look something like this:

30 Create New Debug Configurations and Debug Preloader
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 35: Run Preloader Hello Debug View

This Run Control can now be used to launch the Preloader.

Although this method associates the Preloader image with a specific DS-5 project, it can still be used
with other projects. However, it is important to remember which project contains the Preloader image.

It should load and run the Preloader in the on-chip RAM, similarly to how the simple Bare Metal
example was run. This configures the SDRAM memory controller and then stops.

After that, you can download and run the "Hello World" example in the SDRAM memory. The same
Debug Configuration created earlier for the Hello World example can be used.

Download and Debug "Hello World" Example in the SDRAM Memory

1. Select Run > Debug Configurations.
Select the same debug configuration.

UG-01165
2015.11.30 Download and Debug "Hello World" Example in the SDRAM Memory 31

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 36: Bare Metal "Hello World" Config Debugger

2. Select Debug to launch.
Figure 37: Run "Hello World" from SDRAM Stops at Main

32 Download and Debug "Hello World" Example in the SDRAM Memory
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You should notice in the Commands view that the entry point is now S:0x02000000, which is the
beginning of the mapped SDRAM.

3. Click on the “Step Over Source Line” icon or press F6 to see the program counter progress to the next
source line.

4. Click it again to see the "!!!Hello World!!!" message in the App Console view.
If the App Console view is not currently selected, then the letters are highlighted in bold letters to
indicate that there is a message. Select the App Console view to see the output.

Figure 38: Bare Metal "Hello World" App Console

5. Select Continue to finish executing the program.

UG-01165
2015.11.30 Download and Debug "Hello World" Example in the SDRAM Memory 33

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 39: Bare Metal "Hello World" App Console End

6. To rerun, select the debug connection from the list in the Debug Control view. In this case, it is
“bare-metal-hello-world-01”; and click the yellow arrow.
This runs the same debug configuration again (and run from Main).

7. When you are finished with this application, you can disconnect it from the target. To disconnect, right
click on the Debug Connection and then click on the “Disconnect from Target”.

34 Download and Debug "Hello World" Example in the SDRAM Memory
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 40: Bare Metal "Hello World" App Console Disconnected

It is not necessary to remove the disconnected debug connection from the Debug Control view;
however, it can be removed since it only needs to run once.

Note: If you do not remove a disconnected debug connection, then you can re-launch the configura‐
tion by selecting it from the Debug Control view and clicking the Connect to Target icon
above it.

Don’t forget that if you reboot the board, then you have to run the Preloader to configure the memory
controller before running an application in SDRAM. One quick way to do this is to keep the
disconnected debug connection in the Debug Control view; then select it and click on “Connect to
Target”. This reproduces the previous launch.

8. When you are completely finished with this application, you can remove it from the Debug
Control view. The connections must be disconnected in order to remove them. To disconnect, select
the Debug Connection and then click on the “Disconnect from Target”. Once disconnected you can
select “Remove Connection” or “Remove All Connections”.

9. After removing the Debug Connection from the Debug Control view, rerun the Preloader by using
the Debug Configuration that was created for the Preloader. Rerun the demo, using the Debug
Configuration that was created for the "Hello World" application.

Modify Project to Run from SDRAM Instead of On-Chip RAM
After completing the process of creating a simple "Hello World" application and downloading and
debugging it in on-chip RAM of the Altera SoC, the next step is to configure the same project to run in
SDRAM instead of on-chip RAM.

UG-01165
2015.11.30 Modify Project to Run from SDRAM Instead of On-Chip RAM 35

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To use any SDRAM, the SDRAM controller needs to be configured. This is done by loading and running
the Preloader.

For more information about loading and running the Preloader, refer to the "Preloader" section.

Related Information
Preloader on page 20

Create a New Scatter File to Locate the Bare Metal Application in the SDRAM

In the DS-5 ARM compiler projects, it is the scatter file that specifies the addresses that are used to locate
the code in the required portion of the memory map.

In this step, use the same "Hello World" application, but build it located in the SDRAM memory instead
of the on-chip RAM.

To use SDRAM, you must run the Preloader to configure the SDRAM memory controller. If the SDRAM
is not configured before you start running the project from SDRAM, the following error messages appears:

ERROR(CMD16-TAD274-NAL22):
! Failed to load "bare metal-hello-world-01.axf"
! Failed to write 4,896 bytes to address S:0x02000000 while writing block of 4,096
bytes to address S:0x02000000
! General error on memory or register access.

1. Create a scatter file for SDRAM. Go to File > New > Others... and select Scatter File Editor > Scatter
File.

2. Click Next and enter the file name of the new scatter file as scatter_SDRAM.scat and click Finish.
3. In the scatter_SDRAM.scat editor view, enter the following:

SDRAM 0x02000000 0x02000000 ; 32M SDRAM
{
 APP_CODE + 0
 {
 * (+ RO , + RW , + ZI)
 }
 ARM_LIB_STACKHEAP 0x03000000 EMPTY 0x0x01000000 ; Application heap and
stack
 { }
}

Note: If your HWLibs project needs interrupt support, you have to add a "VECTOR" section at the
beginning of the scatter file. For example:

SDRAM 0x00100000 0x40000000
{
 VECTORS +0
 {
 * (VECTORS, +FIRST)
 }
 APP_CODE +0
 {
 * (+RO, +RW, +ZI)
 }
 ARM_LIB_STACKHEAP +0 EMPTY (0x40000000 - ImageLimit(APP_CODE)) ;
Application heap and stack
 { }
}

36 Create a New Scatter File to Locate the Bare Metal Application in the SDRAM
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This is the standard scatter file for a project that runs from SDRAM in most of the HWLibs
examples in the "<SoC EDS installation path>\embedded\examples\software". Please note that
you have to compile and link “alt_interrupt_armcc.s” in your project. This is needed because
the ARMCC toolchain does not provide the vectors at the start of the program automatically.

Note: For this section, the Vector section is not included since we are running a simple "Hello
World" project only.

Figure 41: SDRAM Scatter File Code Snippet

4. Make sure the new scatter file appears in the Project Explorer view.
Figure 42: SDRAM Scatter file in Project Explorer

5. Associate the new scatter file with the project. Right-click on the project and select Properties > C/C++
Build > Settings > ARM Linker 5 > Image Layout.

6. Browse to the new scatter file.
7. Alternatively, instead of browsing, enter a path, like: ${workspace_loc}\bare-metal-hello-

world-01\scatter_SDRAM.scat); select Apply and then OK.

UG-01165
2015.11.30 Create a New Scatter File to Locate the Bare Metal Application in the SDRAM 37

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 43: SDRAM Scatter File Location Setting

8. Right-click on the project and select Build Project to rebuild with the new scatter file. Use the same
debug configuration created earlier to download and run the application.
The program stops at main and waits there. In the Commands view, notice the entry point is
0x02000000, which is the start address specified in the scatter file for the SDRAM.

38 Create a New Scatter File to Locate the Bare Metal Application in the SDRAM
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 44: Program Stops at SDRAM Start Address

Alternative Way to Create a Simple Bare Metal Project Running from On-Chip-RAM
To create a simple bare metal project that runs from OCRAM, you can also choose to import the Bare
Metal example that is included with the Altera SoC EDS tools into the ARM DS-5 environment. For the
simple "Hello World" bare metal project, you can import either one of the following from the “<SoC EDS
installation path>\embedded\examples\software”:

• Altera-SoCFPGA-HelloWorld-Baremetal-ARMCC.tar (using ARM compiler)
• Altera-SoCFPGA-HelloWorld-Baremetal-GNU.tar (using GNU CC compiler)

Note: The above bare metal project examples can run on Arria 10, Arria V or Cyclone V SoC Develop‐
ment Kits.

UG-01165
2015.11.30 Alternative Way to Create a Simple Bare Metal Project Running from On-Chip-RAM 39

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 45: Embedded Software Example Design List

These examples are make-based examples where the projects compile based on the Makefile settings or
configurations. Creating a simple Bare Metal project manually as shown in the “Simple Bare-Metal Project
Using On-Chip-RAM” section is creating a managed-make project where the makefile is auto-generated.

For more information on how to import, build and debug the project, you can refer to “Importing,
Building and Debugging in a Make-Based Example” section.

Related Information

• Importing, Building and Debugging in a Make-Based Example on page 40
• Simple Bare Metal Project Using On-Chip-RAM on page 5

Importing, Building and Debugging in a Make-Based Example
The import, build and debug of the Altera SoC EDS Make-based example covers importing and debugging
an example included with the Altera SoC EDS tools into the ARM DS-5 environment.

The Make-based example that is included in the following sections, loads the Golden Hardware Reference
Design (GHRD) FPGA image on Cyclone V SoC Development Kit and blinks LEDs to test that the HPS
can control peripherals in the FPGA fabric. This example compiles using the ARM compiler.

40 Importing, Building and Debugging in a Make-Based Example
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Import the Project
1. From within DS-5, select File > Import...
2. In the resulting dialog box, select “Existing Projects into Workspace” and click Next.

Figure 46: Import Existing Projects

3. Select “Select archive file” and browse to the software examples directory of your installation, as shown.

UG-01165
2015.11.30 Import the Project 41

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 47: Embedded Software Example Design List

Note: The file can be found in <SoC EDS installation path>\embedded\examples\software. You
can import other examples for reference according to your usage.

4. Choose the “Altera-SoCFPGA-HardwareLib-FPGA-CV-ARMCC.tar.gz” archive and select Open.
5. Click Finish to complete the import process.

Build the Project
Now that the project is imported, make sure the current toolchain (ARM Compiler 5 (DS-5 built-in)) is
selected correctly in the Tool Chain Editor. This can be done with the following steps:

1. Right click on the project and select "Properties".
2. Go to C/C++ Build > Tool Chain Editor.

Next, right click on the project and select "Build Project". This initiates a Make-based build that does
the following:

• Copies additional source files from HWLibs into the project.
• Creates an object file of the FPGA image using standard Altera tools and objcopy.
• Compiles and links everything into an AXF executable (ELF-compatible).

Note: For details of what is happening, browse the Makefile that is part of the project.

42 Build the Project
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Included with the project are a number of key items that are used to properly initialize the ARM core:

• A scatter file (scatter.scat) that the ARM tools use for linking

Note: Much simpler that GNU linker syntax
• A DS script file (debug-hosted.ds) that controls debug flow

• Loads and runs the Preloader
• Loads the project executable (HWLIB.axf) and stops at the “main” symbol

• A readme.txt file which describes more about this example

Debug the Project
1. Right-click on the project and select Debug > Debug As > Debug Configurations, as shown:

Figure 48: "Altera-SoCFPGA-HardwareLib-FPGA-CV-ARMCC-Debug" Debug Configurations

2. Next to the Connections field, select Browse and select the hardware you are using (Altera USB Blaster
or DStream) from the available connections and click Select.

UG-01165
2015.11.30 Debug the Project 43

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 49: Connection Browser

3. Select Apply and click Debug to start the debug session which will configure the processor, load the
software and execute it, stopping at the “main” symbol as the default.

Figure 50: Debug Stopping at Main

4.
Click the button to start running the code. The code should run to completion. Other options

() are also available on the Debug Control window.
The App Console window should display correct results.

44 Debug the Project
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 51: Application Exit Displayed in App Console

DS-5 ARM HWLIBs Project Derived from Make-Based Project
This section takes a makefile-based example project that comes with SoC EDS and converts it to a
managed make project. “Managed Make” in Eclipse means that the IDE (DS-5 in this case) takes care of
generating and maintaining any Makefiles.

When you use this method, you are able to change the project settings from the GUI.

Note: You cannot automate generic steps, like converting the FPGA SOF file to C object code to be linked
into the application.

A managed make project can be compiled from the command line, since there is a makefile. Therefore,
automated builds can be done using commands.

Create Project

Before you begin

Before you start creating a project, make sure you have gone through the "Importing, Building and
Debugging in a Make-Based Example" section and the example project compiled successfully.

1. Create a new “managed make” project by selecting File > New > C Project.
2. Fill in the resulting dialog box, as shown, naming it whatever you prefer, for example:

armcc_fpga_managed_make.

UG-01165
2015.11.30 DS-5 ARM HWLIBs Project Derived from Make-Based Project 45

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 52: Create New ARMCC FPGA Managed Make Project

Related Information
Importing, Building and Debugging in a Make-Based Example on page 40

46 Create Project
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Copy Files
Make sure the HWLibs FPGA ARMCC project has been imported and compiled successfully before you
proceed. The compiled project creates the FPGA object code file, previously, auto generated using the
makefile.

Before you begin

Copy all C code (files with a .c extension), alt_interrupt_armcc.s, the scatter file and the FPGA object
code (soc_system_dc.o) from the Altera SoC EDS example project.

1. Select the files, right-click and click Copy.

UG-01165
2015.11.30 Copy Files 47

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 53: Files to Copy from the SoC EDS Example Project

2. Right-click the new project (armcc_fpga_managed_make) and select Paste.
All of the files shown in the image should have been copied into the new project.

The C code is built and linked with the FPGA object file, automatically, after setting up the build system
in the next section.

Configure Build Settings

Get ready to build.

Right-click on the project in DS-5’s Project Explorer window and select Properties then browse to
C/C++ Build and select Settings.

48 Configure Build Settings
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 54: ARMCC FPGA Managed Make Settings

Compiler, assembler and linker settings changes are necessary. Please follow the steps in the "ARM C
Compiler Settings" section.

Related Information
ARM C Compiler Settings

ARM C Compiler Settings

1. In "Target", set Target CPU" to "Cortex-A9" and check the "Disable unaligned accesses" box.

UG-01165
2015.11.30 ARM C Compiler Settings 49

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 55: ARMCC Target Settings

2. Add the preprocessor macro “ALT_FPGA_ENABLE_DMA_SUPPORT=1” to ensure that the code
responsible for configuring the FPGA uses the DMA in the HPS.

Figure 56: ARMCC Preprocessor Settings

3. Add the preprocessor macro "soc_cv_av" to set the Cyclone V device family.
4. Select the next category down (“Includes”) and click the “+” button to the right to add the include

paths to Build Settings.
Figure 57: ARMCC Include Path Settings

5. Select “Source Language” and set “Source language mode” to “-c99”.

50 ARM C Compiler Settings
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 58: ARMCC Source Language Settings

Leave "Optimizations", “Debugging”, “Warnings and Errors”, and “Miscellaneous” settings to default
values.

ARM Assembler Settings

Change the settings in “Target” to match the following:
Figure 59: ARM Assembler Target Settings

ARM Linker Settings

1. Define the “Target CPU (--cpu)” as “Cortex-A9” in the Target section.

UG-01165
2015.11.30 ARM Assembler Settings 51

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 60: ARM Linker Target Settings

2. "Define the Image entry point (--entry) as "alt_interrupt_vector" and add the Scatter file (--scatter)
location in the "Image Layout" section.

Figure 61: ARM Linker Image Layout Settings

3. Leave “Libraries”, “Optimization”, “Additional Information”, and “Warnings and Errors” with
default values.

4. Add the FPGA object file in the Miscellaneous settings section.
5. Click on the Add... icon and Browse to the location of the FPGA object file under the

"armcc_fpga_managed_make" Workspace.

52 ARM Linker Settings
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 62: ARM Linker Miscellaneous Settings

UG-01165
2015.11.30 ARM Linker Settings 53

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 63: ARM Linker Miscellaneous Settings - Part 2

6. Click Apply and then OK to apply settings and return.

Build Project
Right-click on the project you created and pull-down to the “Build Project” option. This starts building the
project in the default build directory in the project.

Run/Debug Project

Create a Debug Configuration

1. Right-click on the project and pull-down to the Debug As > Debug Configurations option.
This opens the Debug Configurations dialog box.

2. Create a new configuration and setup the debug hardware as shown.

54 Build Project
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 64: ARMCC FPGA Managed Make Debug Connection Settings

3. Select an available Bare Metal Debug Connection by clicking Browse. This returns a list of the available
debug connections.

Figure 65: Connection Browser

4. Click OK and then go to the Files tab on the top right. Select "Workspace..." and look for the AXF file
in the project Debug sub-directory.

UG-01165
2015.11.30 Create a Debug Configuration 55

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 66: ARMCC FPGA Managed Make Files Settings

5. Click on Apply and then Debug to start the debugging session.

Minimal Preloader
The Minimal Preloader (MPL) is an alternative for the General Public License (GPL) Preloader. It uses the
BSD license and may be freely distributed and modified according to the terms of that license. The MPL
supports a subset of features supported by Altera's GPL Preloader.

The MPL initializes the PLLs, reset signals, configures IOCSR and pin MUXing, and performs other
configuration-based on the preloader generator file settings. It can also load the FPGA from a boot source,
if desired. It then reads a secondary image from a boot source into RAM and hands control to that image.

This version of MPL supports booting from QSPI, SD/MMC and FPGA.

Note: NAND boot is not supported.

The MPL uses Altera HWLib drivers for most of its functionality. It also uses Altera HWLib SoCAL folders
for the memory map definitions and basic read and write commands.

The MPL supports both the ARMCC and GNU GCC compilers. The MPL supports both Cyclone V SoC
and Arria V SoC devices.

Note: Arria 10 SoC devices are not supported.

The example project in the following section is for Cyclone V SoC. Please modify the example as needed to
select appropriate file names.

56 Minimal Preloader
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Minimal Preloader Example Project

Before you begin

The Minimal Preloader (MPL) project provided in the Altera SoC EDS is a non-GPL Preloader that uses
the Altera SoC EDS HWLIBs . To build the MPL, either the ARM Compiler Toolchain or the GCC must
be greater than v14.1.

Import the MPL project by using the steps in the "Importing an Existing Bare Metal Project into DS-5"
chapter.

1. Go to File > Import and select General > Existing Projects into Workspace.
Figure 67: Import Existing Projects

2. Select the Altera-SoCFPGA-HardwareLib-MPL.tar project from the <SoC EDS installation path>\
embedded\examples\software and then click Finish to import the project.

UG-01165
2015.11.30 Minimal Preloader Example Project 57

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 68: Import MPL Project File

3. From the Project Explorer tab, verify all project files are present.

58 Minimal Preloader Example Project
UG-01165

2015.11.30

Altera Corporation Bare Metal User Guide

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 69: MPL Project File List

For more information about building and debugging, refer to the "Importing, Building and Debugging
in a Make-Based Example" section.

Related Information
Importing, Building and Debugging in a Make-Based Example on page 40

Appendix: Troubleshooting

Debug Cable Does Not Work
Be sure that the USB-Blaster II driver is installed and that it is functional. Generally, following the
development kit installation instructions and going through a few of the recommended examples is good
enough to solve this issue.

FPGA Is Not Programmed Successfully
If this occurs, refer to specifics on your development kit, but usually this is due to a mismatched MSEL
(programming mode).

Temporary Directories not Writable
Though uncommon, it is possible for temporary directories that the Eclipse-based DS-5 debugger relies on
being writable are sometimes un-writable. Also, if you run into strange “permission denied” issues when
starting debug sessions, search through all temporary directories in your environment (tmp, TMP, temp,
TEMP) and change or set them to a writable directory.

UG-01165
2015.11.30 Appendix: Troubleshooting 59

Bare Metal User Guide Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Bare%20Metal%20User%20Guide%20(UG-01165%202015.11.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Bare Metal User Guide
	Introduction
	Bare Metal Overview
	Prerequisites for the Bare Metal Development Environment
	Bare Metal Compiler
	Bare Metal Development Flow
	Using DS-5 AE to Create and Manage Bare Metal Projects
	Simple Bare Metal Project Using On-Chip-RAM
	Create Project
	Create New Scatter File to Locate the Bare Metal Application in the OCRAM
	Build and Debug the Project

	Preloader
	Loading and Running the Default Preloader
	Importing Preloader into a DS-5 Project
	Import Preloader
	Create New Debug Configurations and Debug Preloader
	Download and Debug "Hello World" Example in the SDRAM Memory

	Modify Project to Run from SDRAM Instead of On-Chip RAM
	Create a New Scatter File to Locate the Bare Metal Application in the SDRAM

	Alternative Way to Create a Simple Bare Metal Project Running from On-Chip-RAM

	Importing, Building and Debugging in a Make-Based Example
	Import the Project
	Build the Project
	Debug the Project

	DS-5 ARM HWLIBs Project Derived from Make-Based Project
	Create Project
	Copy Files
	Configure Build Settings
	ARM C Compiler Settings
	ARM Assembler Settings
	ARM Linker Settings

	Build Project
	Run/Debug Project
	Create a Debug Configuration

	Minimal Preloader
	Minimal Preloader Example Project

	Appendix: Troubleshooting
	Debug Cable Does Not Work
	FPGA Is Not Programmed Successfully
	Temporary Directories not Writable

