1 D
A I:l = I D A Making Qsys Components

For Quartus 11 13.1

1 Introduction

The Altera Qsys tool allows a digital system to be designed by interconnecting selected Qsys components, such as
processors, memory controllers, parallel and serial ports, and the like. The Qsys tool includes many pre-designed
components that may be selected for inclusion in a designed system, and it is also possible for users to create
their own custom Qsys components. This tutorial provides an introduction to the process of creating custom Qsys
components. The discussion is based on the assumption that the reader is familiar with the Verilog or VHDL
hardware description language and is also familiar with the material in the tutorial Introduction to the Altera Qsys
System Integration Tool.

The screen captures in this tutorial were obtained using the Quartus II version 13.1 software; if other versions are
used, some of the images may be slightly different.

Contents:

* Introduction to Qsys

* What is a Qsys component?

* Avalon Memory-Mapped Interface details
* Adding a new component to Qsys

* Instantiating the new component

Altera Corporation - University Program 1
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

2 Introduction to Qsys

The Qsys tool allows users to put together a system using pre-made and/or custom components. Such systems
usually comprise one or more processors, memory interfaces, I/O ports and other custom hardware. The Qsys-
created system can be included as part of a larger circuit and implemented on an FPGA board, such as the Altera
DE-series boards. An example of such a system is depicted in Figure 1, where the part of the system created by the
Qsys tool is highlighted in a blue color.

Host computer

[\/_ (USB connection)
Llj— USB Altera DE-series Board RS-232

Blaster KEY chip
Reset
JTAG port Nios Il processor
P Interval Serial port
timer

Avalon Interconnect

System .
- On-chip
1D FPGA chip memory
Parallel Parallel Parallel Parallel SRAM SDRAM Parallel
port port ports port controller controller ports
T | | T i
Slider 7-Segment LEDs Pushbuttons SRﬁM SDE_AM Expansion
switches displays chip chip connectors

Figure 1. Block diagram of an example Qsys system implemented on an FPGA board.

Each component in the system, referred to as a Qsys component, adheres to at least one of the Avalon Interfaces
supported by Qsys. With the interface defined for the component, Qsys is able to construct an interconnect structure,
called the Avalon Interconnect, which enables components to exchange data. The Qsys tool can generate a system
based on the selected set of components and user parameters. The generated system contains Verilog or VHDL code
for each component and the interconnect structure, allowing it to be synthesized, placed and routed for an FPGA
device.

2 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

In this tutorial we explain what we mean by a Qsys component, describe the Avalon Interfaces in more detail, and
show how to create a custom component that can be included in the Qsys list of available components.

3 What is a Qsys Component?

A Qsys component is a hardware subcircuit that is available as a library component for use in the Qsys tool. Typically,
the contains two parts: the internal hardware modules, and the external Avalon Interfaces. The internal modules are
the circuits that implement the desired functionality of the Qsys component, while the Avalon Interfaces are used by
the component to communicate with hardware modules that are external to the component.

There are many types of Avalon Interfaces; the most commonly used types are:

¢ Avalon Clock Interface — an interface that drives or receives clocks
* Avalon Reset Interface — an interface that provides reset capability

* Avalon Memory-Mapped Interface (Avalon MM) — an address-based read/write interface which is typical of
master-slave connections

* Avalon Streaming Interface (Avalon-ST) — an interface that supports unidirectional flow of data

* Avalon Conduit Interface — an interface that accommodates individual signals or groups of signals that do
not fit into any of the other Avalon Interface types. You can export the conduit signals to make connections
external to the Qsys system.

A single component can use as many of these interface types as it requires. For example, a component might provide
an Avalon-ST port for high-throughput data, in addition to an Avalon MM slave port for control. All components
must include the Avalon Clock and Reset Interfaces. Readers interested in more complete information about the
Avalon Interfaces may consult the Avalon Interface Specifications document that can be found on the Altera website.

In this tutorial we will show how to develop a Qsys component that has an Avalon Memory-Mapped Interface and
an Avalon Conduit Interface. The component is a 32-bit register that can be read or written as a memory-mapped
slave device via the Avalon Interconnect and can be visible outside the system through a conduit signal. The purpose
of the conduit is to allow the register contents to displayed on external components such as LEDs or 7-segment
displays. Thus, this register is similar to the output parallel ports shown in Figure 1.

If the register is to be used in a system such as the one depicted in Figure 1, then it should respond correctly to
Nios II instructions that store data into the register, or load data from it. Let D be the 32-bit input data for the
register, byteenable be the two-bit control input that indicates which byte(s) will be loaded with new data, and Q be
the 32-bit output of the register. In addition, it is necessary to provide clock and reset signals. Figures 2 and 4 show
a suitable specification for the desired register, called reg32, in Verilog and VHDL, respectively.

Our register will be instantiated in a top-level module that provides the necessary signals for connecting to an Avalon
MM Interconnect. Let this module be called reg32_avalon_interface. The Avalon MM Interface signals used in this
module are:

Altera Corporation - University Program 3
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

* clock

* resetn — active-low reset signal

* readdata — 32-bit data read from the register

* writedata — 32-bit data to be stored in the register

* read — active when a read (load) transaction is to be performed

* write — active when a write (store) transaction is to be performed

* byteenable — two-bit signal that identifies which bytes are being used

* chipselect — active when the register is being read or written

The reg32_avalon_interface module also provides a 32-bit Avalon Conduit Interface signal called Q_export. Fig-
ures 3 and 5 show how this module can be specified in Verilog and VHDL code, respectively.

module reg32 (clock, resetn, D, byteenable, Q);
input clock, resetn;
input [3:0] byteenable;
input [31:0] D;
output reg [31:0] Q;

always @ (posedge clock)

if (Iresetn)
Q <=32'b0;

else

begin
// Enable writing to each byte separately
if (byteenable[0]) Q[7:0] <= D[7:0];
if (byteenable[1]) Q[15:8] <= D[15:8];
if (byteenable[2]) Q[23:16] <= D[23:16];
if (byteenable[3]) Q[31:24] <= D[31:24];

end

endmodule

Figure 2. Verilog code for the 32-bit register.

4 Avalon Memory-Mapped Interface Details

The Avalon Memory-Mapped Interface is a bus-like protocol that allows two components to exchange data. One
component implements a master interface that allows it to request and send data to slave components. A slave com-
ponent can only receive and process requests, either receiving data from the master, or providing the data requested
by the master.

4 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

module reg32_avalon_interface (clock, resetn, writedata, readdata, write, read,
byteenable, chipselect, Q_export);

// signals for connecting to the Avalon fabric
input clock, resetn, read, write, chipselect;
input [3:0] byteenable;

input [31:0] writedata;

output [31:0] readdata;

/1 signal for exporting register contents outside of the embedded system
output [31:0] Q_export;

wire [3:0] local_byteenable;
wire [31:0] to_reg, from_reg;

assign to_reg = writedata;
assign local_byteenable = (chipselect & write) ? byteenable : 4'd0;

reg32 Ul (.clock(clock), .resetn(resetn), .D(to_reg), .byteenable(local_byteenable),
.Q(from_reg));

assign readdata = from_reg;
assign Q_export = from_reg;
endmodule

Figure 3. Verilog code for the Avalon MM Interface.

Each slave device includes one or more registers that can be accessed for read or write transaction by a master
device. Figures 6 and 7 illustrate the signals that are used by master and slave interfaces. The direction of each
signal is indicated by arrows beside it, with < indicating an output and — indicating an input to a device. All
transactions are synchronized to the positive edge of the Avalon clk signal. At time f, in the figures, the master
begins a read transaction by placing a valid address on its address outputs and asserting its read control signal. The
slave recognizes the request because its chipselect input is asserted. It responds by placing valid data on its readdata
outputs; the master captures this data on its readdata inputs and the read transaction ends at time #;. A second read
transaction is shown in the figure starting at time £,. In this case, the slave device asserts the waitrequest input of the
master, which can be used to extend a read transaction by any number of clock cycles. The slave device deasserts
the waitrequest signal and provides the requested data at time 3, and the read transaction ends at time .

A write transaction is illustrated starting at time #5 in Figures 6 and 7. The master places a valid address and data on
its address and datawrite outputs, and asserts the write control signal. The slave captures the data on its datawrite
inputs and the write transaction ends at time #g. Although not shown in this example, a slave device can assert the
waitrequest input of the master to extend a write transaction over multiple clock cycles if needed.

Addresses used by master devices are aligned to 32-bit word boundaries. For example, Figure 8 illustrates four

Altera Corporation - University Program 5
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY reg32 IS
PORT (clock, resetn : IN STD_LOGIC;
D :IN STD_LOGIC_VECTOR(31 DOWNTO 0);
byteenable :IN STD_LOGIC_VECTOR(3 DOWNTO 0);
Q : OUT STD_LOGIC_VECTOR((31 DOWNTO 0));
END reg32;

ARCHITECTURE Behavior OF reg32 IS
BEGIN
PROCESS
BEGIN
WAIT UNTIL clock EVENT AND clock ='1";
IF resetn = '0'THEN
Q <= "00000000000000000000000000000000";
ELSE
IF byteenable(0) = '1'THEN
Q(7 DOWNTO 0) <= D(7 DOWNTO 0); END IF;
IF byteenable(1) = '1'THEN
Q(15 DOWNTO 8) <= D(15 DOWNTO 8); END IF;
IF byteenable(2) = '1'THEN
Q23 DOWNTO 16) <= D(23 DOWNTO 16); END IF;
IF byteenable(3) = '1'THEN
Q31 DOWNTO 24) <= D(31 DOWNTO 24); END IF;
END IF;
END PROCESS;
END Behavior;

Figure 4. VHDL code for the new register.

32-bit addresses that could be used to select four registers in a slave device. The address of the first register is
0x10000000, the address of the second register is 0x10000004, and so on. In this example, the slave would have
a two-bit address input for selecting one of its four registers in any read or write transaction. Since addresses are
word-aligned, the lower two address bits from the master are not seen in the slave. The master provides a four-bit
byteenable signal, which is used by the slave to control a write transaction for individual bytes. For example, if
the master performs a write transaction to only the most-significant byte of the second register in Figure 8 then the
master would write to address 0x10000007 with its byteenable output signal set to the value 0x1000. The slave
device would see its two-bit address input set to 0x01 and would use its byteenable inputs to ensure that the write
transaction is performed only for the selected byte of the second register. Although the byteenable signals are not
shown in Figures 6 and 7, they have the same timing as the address signals.

The above examples show the basic transactions between a master and a slave. More advanced transactions can be

6 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS

For Quartus IT 13.1

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY reg32_avalon_interface IS

PORT (clock, resetn :IN STD_LOGIC;
read, write, chipselect :IN STD_LOGIC;
writedata :IN STD_LOGIC_VECTOR(31 DOWNTO 0);
byteenable :IN STD_LOGIC_VECTOR(3 DOWNTO 0);
readdata : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
Q_export : OUT STD_LOGIC_VECTOR(31 DOWNTO 0));

END reg32_avalon_interface;

ARCHITECTURE Structure OF reg32_avalon_interface IS
SIGNAL local_byteenable : STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL to_reg, from_reg : STD_LOGIC_VECTOR(31 DOWNTO 0);

COMPONENT reg32
PORT (clock, resetn : IN STD_LOGIC;
D - IN STD_LOGIC_VECTOR(31 DOWNTO 0);
byteenable : IN STD_LOGIC_VECTOR((3 DOWNTO 0);
Q : OUT STD_LOGIC_VECTOR(31 DOWNTO 0));
END COMPONENT;
BEGIN

to_reg <= writedata;
WITH (chipselect AND write) SELECT
local_byteenable <= byteenable WHEN '1', "0000" WHEN OTHERS;
reg_instance: reg32 PORT MAP (clock, resetn, to_reg, local_byteenable, from_reg);
readdata <= from_reg;
Q_export <= from_reg;
END Structure;

Figure 5. VHDL code for the memory-mapped new-register interface.

performed, the procedure for which is described in the Avalon Interconnect Specifications document.

Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS

For Quartus IT 13.1

clk
address
writedata

readdata
write

read
waitrequest

RN

t, t, t, t t, te te
L LI [[L1 1
address address address , >—

data >—
data data
I
) S — |
1

Figure 6. Timing diagram for read/write transactions from the master’s point of view.

clk
address
writedata
readdata
chipselect
write

read
waitrequest

YEEREEE

tO t1 t2 t3 t4 t5 t6
I I I I I | I I I L |
address address address >—
data >—

data data
] I O L 1
L

S Y |

1

Figure 7. Timing diagram for read/write transactions from the slave’s point of view.

First Register

Second Register

Third Register

chsitrzgs ilgzilreess[l..O] s L
0x10000000 00
0x10000004 01
0x10000008 10
0x1000000C 11

Fourth Register

Figure 8. Example for registers in an Avalon MM Interface.

Altera Corporation - University Program

April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

5 Adding a New Component to the Qsys Component Library

In this section we show how to create a new Qsys component for our 32-bit register defined in Figures 2 to 5.
As a first step, start the Quartus II software and make a new project for use with this tutorial. Name the project

component_tutorial, and choose the settings that are needed for your DE-series board, including the specific FPGA
chip.

Later, we will create a top-level HDL file for the component_tutorial project, but first we will use the Qsys tool
to generate an embedded system. Open the Qsys tool to get to the window depicted in Figure 9. The Qsys tool
automatically includes a clock component in the system, as shown in the figure. Since we will use an active-low
reset signal for our system, click on the name of the reset signal on the clock component and change it to resetn.

% Qs E=E=
File Edit Systemn Generate View Tools Help
| Ubrary S@‘\ — = &|| I system Contents &2 Address Map #3 | Project Settings &8 ‘ =]
& ® 4F |Use Comn... Name Description Export Clock Base
Project - || ¥ B cko (Clock Source
L e £ dk_in [Clock Input clie exported
Library
sridges clk (Clock Cutput dk_D
-Bridges and Adapters clk_reset Reset Cutput

-Clock and Reset
-Configuration & Programming
-DSP

-Embedded Processors
-Interface Protocols
[#-Memories and Memory Controllers
Merlin Components
-Microcontroller Peripherals
Peripherals

-PLL

L Interconnect

Ed... o Add...
[T, Herarchy £ ™ - =

IQ unsaved
-m= ck

m

A KCrNE

[4]-Be= reset

B ck_0
[= dk
[-me dk_in
e

- k_reset

4| [

EMemgas 23‘\- I il

Description Path

0 Errors, 0 Warnings

Figure 9. Qsys window.

Altera Corporation - University Program 9
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS

For Quartus IT 13.1

Before creating the new Qsys component for our 32-bit register, we will first instantiate some other components that
will be needed in our system. In the Component Library area of the Qsys window expand the Embedded Pro-
cessors item and add a Nios |l Processor to the system. In the Nios IT Processor dialog window that opens, select
Nios Il/e as the type of processor, and then click Finish. Next, in the Component Library, open the Memories
and Memory Controllers item, then open the On-Chip subitem, and add the component called On-Chip Memory
(RAM or ROM). Click Finish to return to the main Qsys window. In the Connections area of the Qsys window,
make the connections illustrated in Figure 10 between the clock component, Nios II processor, and on-chip memory
module.

10

File Edit Systemn Generate View Tools Help

e o we

=)

EBEEERN oo

&4

[=-Memories and Memary Controllers
‘External Memory Interfaces
[=-On-Chip

Avalon-5T Dual Clock FI
Avalon-ST Multi-Channe
Avalon-5T Round Robin
Avalon-5T Single Clock F
©On-Chip FIFQ Memary

-Merlin Components
-Microcontroller Peripherals
-Peripherals

-PLL

-Qsys Interconnect

- Merifiratinn
1| (1] | *

[On-Chip Memary (RAM {

-

. Herachy =

ik
W= resen
SEmdck_0
E-=-a dk
(- ck_in
[#-m= clk_in_reset
[t = dk_reset
=4k nios2_qgsys_0
23 -3
-=@ custom_instruction_master
(- =@ d_irg
-8 data_master
=8 instruction_master
»= jtag_debug_module
=8 jtag_debug_module_reset

E-m= okl

m,

I: System Contents £ Address Map £ | Project Settings & ‘ =
£ Use Connections Name Description Export Clock Base
x = clk_0 Clock Source
E“ (mel dk_in (Clock Input clic exported
B el ck_in_reset Reset Input resetn
= _— dk Clock Output dk_0
~ — ck_reset Reset Qutput
- B nios2_qsys_0 Nios II Processor
dk (Clock Input clk_0
= reset_n Reset Input [ck]
? —_— data_master \valon Memory Mapped Master [clk]
—1— instruction_master \avalon Memory Mapped Master [dlk]
— jtag_debug_module_r. .. Reset Qutput [dk]
jtag_debug_module \avalon Memory Mapped Slave [ck] 0x0800
custom_instruction_m... (Custom Instruction Master
E onchip_memory2_0 |On-Chip Memory (RAM or ROM)
dk1 (Clock Input clk_0
sl \avalon Memory Mapped Slave [dk1] 0x0000
resetl Reset Input [dk1]
4| I r
@!; Messages 3 N - o
Description Path @
EIE) 4Errors =
9 Reset slave is not specified. Flease select the reset slave System.nios2_gsys_0
9 Exception slave is not specified. Please select the exception slave System.nios2_gsys_0 =
e nios2_gsys_0.jtag_debug_module {0x800..0xfff) overlaps onchip_memory2_0.s1 System.nios2_gsys_0.data_master
e nios2_gsys_0.jtag_debug_module (0x800..0xfff) overlaps onchip_memory2_0.s1 |System.nios2_gsys_D.instruction_master -
4Errars, 0 Warnings

Figure 10. Connections needed between components.

Altera Corporation - University Program

April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

Errors will be displayed in the Qsys Messages window about the Reset and Exception vectors memories that are
needed for the Nios II Processor. To fix these errors, re-open the Nios II processor component that has already been
added to the system. In the window shown in Figure 11 use the provided drop-down menus to set both the Reset
vector memory and Exception vector memory to the on-chip memory component. Click Finish to return to the main
Qsys window.

]

A Nios II Processor - nios2_gsys

“ Nios Il Processor

Magocers altera_nios2_gsys

Core Nios Il | Caches and Memory Interfaces. I Advanced Features | MMU and MPU Settings | JTAG Debug Module

|v Select a Hios Il Core
Nios Il Core:

@ Nios Ve

(") Nios s

(©) Nios WF

Nios llife Nios ll/'s Nios Il/f

RISC RISC RISC

Nios Il 32-bit 32-bit 32-bit

Selector Guide

Instruction Cache
Branch Prediction
Hardware Multiply
Hardware Divide

Instruction Cache

Branch Prediction

Hardware Multiphy

Hardware Divide

Barrel Shifter

Data Cache

Dynamic Branch Prediction

Memory Usage (e.g Stratix V)

Two M9Ks (or equiv.)

Two M3Ks + cache

Three MSKs + cache

|v Hardware Arithmetic Operation

Hardware multiplication type:

Hardware divide

Embedded Multipliers

|~ Reset Vector

Reset vector memory:
Reset vector offset:

Reset vector:

:Dnchip_memnryz_ﬂ.m

0x00000000
0x00000000

L ion Vector

Exception vector memory:
Exception vector offset:

Exception vector:

:Dnchip_memnryz_ﬂ.m

0x00000020
0x00000020

|~ MMU and MPU

Figure 11. Setting the reset and exception vector memories.

Altera Corporation - University Program

April 2014

11

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS

For Quartus IT 13.1

The Qsys window may now show an error related to overlapping addresses assigned to the components in the sys-
tem. To fix this error click on the System menu in the Qsys window and then click on Assign Base Addresses.
The Qsys window should now appear as illustrated in Figure 12.

12

File Edit System Generate View Tools Help

Library -==

4

*

=-Memories and Memory Controllers
‘External Memory Interfaces
= On{h\p

On-Chip FIFO Memory

-Merlin Components
Microcontroller Peripherals
-Peripherals

PLL

-Qsys Interconnect

Verifiration
1 . »

Avalon-ST Dual Clock FI
Avalon-ST Multi-Channe
Avalon-5T Round Robin
Avalon-5T Single Clock F

[EWOn-Chip Memory (RAM {

-

[

Edi.. Ja Add...

i = ok

B resetn

=Rm ck_0

dk

= dk_in
[mm ck_in_reset
=-a dk_reset

=--4F nios2_gsys_0

= ck

=8 custom_instruction_master
-a d_irg

=@ data_master

=& instruction_master

[+ mm jtag_debug_module

=& jtag_debug_module_reset
- reset n

—I-4Zk onchip_memary2_0

= cki
B= resetl
[M- 51

m

Ij System Contents &2 Address Map &2 | Project Settings &% ‘ =]
4P |Use Connections Name Description Export Clock Base
x = ck_0 Clock Source
E (== dk_in (Clock Input clic exported
5 s ck_in_reset Reset Input resetn
= —_—— dk (Clock Qutput dk_0
“~ ———| ck_reset Reset Output
— E nios2_gsys_0 INios II Processor
dk (Clock Input clk_0
= reset_n Reset Input [clk]
? — data_master \Avalon Memary Mapped Master [clk]
— instruction_master \valon Memory Mapped Master [clk]
pA— jtag_debug_module_r... Reset Output [ck]
jtag_debug_module \Avalon Memory Mapped Slave [ck] 0x2800
custom_instruction_m... [Custom Instruction Master
B onchip_memory2_0 |COn-Chip Memory (RAM or ROM)
k1 (Clock Input clk_0
sl ‘Avalon Memory Mapped Slave [dk1] 0x1000
resetl Reset Input [dk1]
< . b
e AN e

Description

Path

0 Errors, 0 Warnings

Figure 12. The base Qsys system.

Altera Corporation - University Program

April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

Now, we will create the new Qsys component for our 32-bit register, and make this component available in the Qsys
Component Library. To create a new component, click the New... button in the Component Library area of the
Qsys window. The Component Editor tool, shown in Figure 13, will appear. It has five tabs.

The first step in creating a component is to specify where in the Component Library our new component will
appear. In the current tab, Component Type, change the Name to reg32_avalon_interface, the Display name to
reg32_component, and provide a name for the Group setting, such as My Own IP Cores.

P

A& Component Editor - reg32_avalon_interface_hw.tcl* [&J

File Templates

Companent Type | Files I Parameters I Signals I Interfaces

+ About Component Type

Name: reg32_avalon_interface

Display name: reg32_component

Version: 1.0

Group: My Own IP Cores| -
Description:

Created by:

Icon: [:
Documentation: Title LRL

) To Do: Add HDL files on the Files tab, or add signals on the Signals tab.

4 Prev [Next |r] [Finish...

Figure 13. Component Editor window.

Altera Corporation - University Program 13
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

Next, we add the files that describe the component. Go to the Files tab, depicted in Figure 14, and then click on the
+ button under Synthesis Files to browse and select the top-level file reg32_avalon_interface.v. Qsys analyses this
file to determine the types of interfaces that are used by the component. Optionally, you can click on the + button
again and add the file reg32.v. Then click the Copy from Synthesis Files button under Verilog Simulation Files
to add the files for simulation. To run the anaylsis of the top-level file, click on the Analyze Synthesis Files button.
If the Component Editor finds any errors when analyzing the top-level file, then they will need to be fixed and the
code re-analysed. Once no syntax errors are present, then the next step is to specify the types of interfaces that are
used by the component.

- =)

A& Component Editor - reg32_avalon_interface_hw.tcl*

File Templates

ComponentType| Files | Parameters I Signals I Interfaces

+ About Files

Synthesis Files
These files describe this compenent’s implementation, and will be created when a Quartus IT synthesis model is generated.

The parameters and signals found in the top-evel module will be used for this component's parameters and signals.

Cutput Path Source File Type Attributes

reg32_avalon_interface.v D:jcomponent_tutorialfreg32_... Verilog HDL

nn ot PP TR T
E] | Analyze Synthesis Files | Create Synthesis File from Signals

Top-evel Module: [regis_avalon_interface « |

Verilog Simulation Files
These files will be produced when a Verilog simulation model is generated.
Cutput Path Source File Type Attributes
reg32_avalon_interface.w |D:/component_tutorialfreg32_... |Verilog HDL no attributes -
CL ru b sbarin] femmD Ly -] Lar P S S
- Copy from Synthesis Files
VHDL Simulation Files

These files will be produced when a VHOL simulation model is generated.

Cutput Path Source File Type Attributes

- ’ Copy from Synthesis Files]

{3 Error: clock_reset: Synchronous edges DEASSERT requires assodated dock

[T E— [} L -1 1 Adot LT Fml) AN

[Help] ’ 4 Prev ” MNext [] [Finish...

Figure 14. Adding HDL files that define the new component.

14 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS

For Quartus IT 13.1

Click on the Signals tab to specify the meaning of each interface port in the top-level entity. This leads to the
window in Figure 15.

-

£ Component Editor - reg32_avalon_interface_hw.tcl*

File Templates

Component Type I Files I Parameters | Signils | Interfaces

» About Signals

MName Interface Signal Type Width Direction
clock clock_reset reset_n 1 input
resetn avalon_slave_0 writeresponserequest_n |1 input
byteenable avalon_slave_0 byteenable 4 input
writedata avalon_slave_0 writedata 32 input
readdata avalon_slave_0 readdata 32 output
write avalon_slave_0 write i input
read avalon_slave_0 read 1 input
chipselect avalon_slave_0 chipselect i input
Q_export avalon_slave_0 readdata 32 output

Add Signal Remove Signal

e Error: clock_reset: Synchronous edges DEASSERT requires associated dock

', Warning: avalon_slave_0: Signal readdata appears 2 times (only once is allowed)

e Error: avalon_slave_0: Interface must have an assodated dock

{3 Error: avalon_slave_0: Interface must have an associated reset

a Error: avalon_slave_0: write response requires all signals (response, writeresponserequest, writeresponsevalid).
e Error: avalon_slave_0: Interface must have an assodated dock,

[Help] [4 Prev]| Next [| ’ Finish. ..

Figure 15. Initial settings for component signals.

Altera Corporation - University Program

April 2014

15

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

To define correctly the meaning of each signal, it is necessary to specify the entries in the Interface and Signal Type
columns. For the clock signal, select new Clock Input... as its interface kind and clk as its signal type, as indicated in
Figures 16 and 17. Observe that the interface is now labeled clock_sink, because it receives the clock input signal.
For the resetn signal, select new Reset Input... as its interface and reset_n as its signal type, as indicated in Figures 18
and 19.

F hl
£ Component Editor - reg32_avalon_interface_hw.tcl* M
File Templates

Component Type I Files I Parameters | Signals | Interfaces
b About Signals
Mame Interface Signal Type Width Direction
[clo (clock reset - | =

byteenable new Avalon Streaming Sink... » |byteenable 4 input
chipselect new Avalon Memory Mapped Trisiate Slave... chipselect 1 input
Q_export new AXT Master... readdata 32 output
read new AXT Slave... read 1 input
readdata new AXT$ Master... readdata 32 output
resetn new AXT4 Save... writeresponserequest_n |1 input
write new Clock Ouiout... write i input
writedata w __|writedata 32 input

\new Condiit. ..

new HSST Bonded Clock Oufput...

new HSST Bonded Clock Input...

new HSST Senal Clock Outout...

new HSST Serial Clock Input.... -

new Interrupt Receiver... 1

new Interrupt Sender. ..

new Custom Instruction Master...

\new Custom Instruction Siave...

new Resel Ouiout...

new Resef Input... B

new Thistate Conduit Master. .. -

Add Signal Remove Signal
e Error: clock_reset: Synchronous edges DEASSERT requires assocated dock -
v, warning: avalon_slave_0: Signal readdata appears 2 times {only once is allowed) I
e Error; avalon_slave_0: Interface must have an assodated dock 3
e Error: avalon_slave_0: Interface must have an assodated reset .
e Error: avalon_slave_0: write response reguires all signals (response, writeresponserequest, writeresponsevalid).
e Error: avalon_slave_0: Interface must have an assodated dock, o=
[Help] ’ 4 Prev l [MNext [] [Finish...

Figure 16. Specifying the clock interface.

16 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS

For Quartus IT 13.1

-
£ Compenent Editor - reg32_avalon_interface_hw.tcl*

File Templates

| Component Type I Files I Parameters | Signils | Interfaces

» About Signals

Name Interface
byteenable avalon_slave_0
chipselect avalon_slave_0

f Q_export avalon_slave_0
read avalon_slave_0
readdata avalon_slave_0
resetn avalon_slave_0
write avalon_slave_0
writedata avalon_slave_0

Signal Type Width

v.mn—l
4

reset 1
reset_n 32
read 1
readdata 32
writeresponserequest_n |1
write 1
writedata 32

Direction

input
input
output
input
output
input
input

input

Add Signal

Remove Signal

|
L

1 /4, Warning: cleck_reset: Interface has no signals

\ e Error: clock_reset: Synchronous edges DEASSERT requires assocated dock

| N Warning: avalon_slave_0: Signal readdata appears 2 times (only once is allowed)

{3 Error: avalon_slave_0: Interface must have an assodated dock
a Error: avalon_slave_0: Interface must have an assodated reset
e Error: avalon_slave_0: write response reguires all signals (response, writeresponsereguest, writeresponsevalid).

| »

m

[Help] [4 Prev][MNext [] ’ Finish...

Figure 17. Specifying the signal type for clock.

Altera Corporation - University Program
April 2014

17

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS

For Quartus IT 13.1

18

-

£ Compenent Editor - reg32_avalon_interface_hw.tcl*

File Templates

Component Type I Files I Parameters | Signils | Interfaces

» About Signals

Mame
|

clock
byteenable
chipselect
P Q export

readdata

Interface
clock_sink
avalon_slave_0
avalon_slave_0
avalon_slave_0

read avalon_slave_0

avalon_slave_0

Signal Type
clk
byteenable
chipselect
readdata
read
readdata

I resetn
write
writedata

il
L
1 ‘4, Warning: clock_reset: Int]
\ e Error: clock_reset: Synchi

avalon slave 0

new HSST Bonded Clock Oulput..
new HSST Bonded Clock Input...
new HSST Senal Clock Outout...
new HSST Serial Clock Input....
new Interrupt Receiver...

new Interrupt Sender. ..

\new Custom Instructon Master...
\new Custom Instruction Siave...
new Reset Ouiput...

new Resef Input... *
new Thistate Conduit Master. ..
\new Tristate Conduit Siave...

» |write
writedata

m

Width
1
4
1
32
1
32

1
32

Direction
input
input
input
output
input
output

input

input

- Ir—

onal

-

| N Warning: avalon_slave_0

{3 Error: avalon_slave_0: Interface must have an assodated dock

a Error: avalon_slave_0: Interface must have an assodated reset

: Signal readdata appears 2 times {only once is allowed)

e Error: avalon_slave_0: write response reguires all signals (response, writeresponsereguest, writeresponsevalid).

»

m

[Help]

[4 Prev][MNext []

| Finish...

Figure 18. Specifying the resetn interface.

Altera Corporation - University Program

April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1
F ——— — B

£ Component Editor - reg32_avalon_interface_hw.tcl* g
File Templates

Component Type I Files I Parameters | Signils | Interfaces

» About Signals

MName Interface Signal Type Width Direction

clock clock_sink clk 1 input

byteenable avalon_slave_0 byteenable 4 input

chipselect avalon_slave_0 chipselect 1 input

Q_export avalon_slave_0 readdata 32 output

read avalon_slave_0 read 1 input

readdata avalon_slave_0 output
[—

write avalon_slave_0

writedata avalon_slave_0

Add Signal Remove Signal

/4, Warning: cleck_reset: Interface has no signals -
e Error: clock_reset: Synchronous edges DEASSERT requires assocated dock

/4, Warning: avalon_slave_0: Signal readdata appears 2 times (only once is allowed) E
{3 Error: avalon_slave_0: Interface must have an assodated dock

a Error: avalon_slave_0: Interface must have an assodated reset

e Error: avalon_slave_0: Interface must have an assodated dock, -

[Help] [4 Prev] [MNext [] ’ Finish...
Figure 19. Specifying the signal type for resetn.
Altera Corporation - University Program 19

April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

Finally, the Q_export signal must be visible outside the Qsys-generated system; it requires a new interface which is
not a part of the Avalon Memory-Mapped Interface. Click on the Interface column for this signal and select new
Conduit... as the desired kind of interface, as shown in Figure 20. Then choose export as its signal type. The rest of
the signals shown in the Component Editor already have correct interface types, as their names are recognizable as
specific Avalon signals. The Component Editor window should now appear as shown in Figure 21.

s — ——— B
L Component Editor - reg32_avalon_interface_hw.tcl* - ﬁ
File Templates

Component Type I Files I Parameters | Signils | Interfaces
» About Signals
MName Interface Signal Type Width Direction t
clock clock_sink clk 1 input
byteenable avalon_slave_0 byteenable 4 input
chipselect avalon_slave_0 chipselect 1 input
0 expo \avalon slave 0 - | - B output
read avalon_slave_0 » |read 1 input
readdata cock_sink __|readdata 32 output
resetn clock_sink_1 reset_n 1 input
write reset_sink write i input
writedata new ANE Master... writedata 32 input
new AHE Siave... .
new AFE Master... -
new AFS Siave... 1 I
new Avalon Memory Mapped Master...
new Avalon Memory Mapped SBve...
new Avalon Streaming Source...
new Avalon Sireaming Snk...
new Avalon Memory Mapped Triséafe Slave...
new AXT Slave...
\new AXT4 Master...
new AXT4 Save... i
new Clook Ouiout...
new Clock Input... -
onal
- f
‘t, Warning: cleck_reset: Interface has no signals o |
e Error: clock_reset: Synchronous edges DEASSERT requires associated dock
v, Warning: avalon_slave_0: Signal readdata appears 2 times (only once is allowed) E
e Error: avalon_slave_0: Interface must have an assodated dock A
{3 Error: avalon_slave_0: Interface must have an associated reset
e Error: avalon_slave_0: Interface must have an assodated dock, -
[Help] [4 Prev] [MNext |] ’ Finish...
b
Figure 20. Creating an external interface for Q_export.
20 Altera Corporation - University Program

April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

Note that there are still some error messages. Click on the Interfaces tab to Observe that the Qsys tool assumed that
there would be an interface named clock_reset. But, we chose a different interface for the clock, by selecting a new
Clock Input in Figure 16, which resulted in the interface named clock_sink. Click on the Remove Interfaces With
No Signals button. Observe that the unwanted clock_reset interface is removed, as well as the two error messages
pertinent to this interface.

The next error message states that the avalon_slave_0 interface must have an Associated Clock and an Associated
Reset. Select clock_sink as this clock and reser_sink as the reset, as indicated in Figure 22. Also note in Figure 22
that under the Timing heading we have changed the parameter called Read wait for the avalon_slave_0 interface
from its default value, which was 1, to the value 0. This parameter represents the number of Avalon clock signals
that the component requires in order to respond to a read request. Our register can respond immediately, so we do
not need to use the default of 1 wait cycle.

Altera Corporation - University Program 21
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS

For Quartus IT 13.1

22

-
‘L Component Editor - reg32_avalon_interface_hw.tcl®

File Templates
| Component Type I Files I Parameters | Signils | Interfaces
» About Signals
MName Interface Signal Type Width Direction
clock clock_sink clk 1 input
byteenable avalon_slave_0 byteenable 4 input
chipselect avalon_slave_0 chipselect 1 input
4| |Q_export conduit_end export 32 output
read avalon_slave_0 read 1 input
| readdata avalon_slave_0 readdata 32 output
resetn reset_sink reset_n 1 input
write avalon_slave_0 write i input
writedata avalon_slave_0 writedata 32 input
||
|
Ll
I
I
Add Signal Remove Signal

'+, Warning: cleck_reset: Interface has no signals

e Error: clock_reset: Synchronous edges DEASSERT requires assocated dock
e Error: avalon_slave_0: Interface must have an assodated dock

{3 Error: avalon_slave_0: Interface must have an associated reset

a Error: avalon_slave_0: Interface must have an assodated dock.

‘=, Warning: cleck_sink_1: Interface has no signals

»

m

[Help] [4 Prev][MNext [] ’ Finish...

Figure 21. Final settings for component signals.

Altera Corporation - University Program

April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS

For Quartus IT 13.1

The remaining error messages state that the reser_sink interface must have an associated clock. Set this clock to
clock_sink, as depicted in Figure 23. Now, there should be no error messages left. Click Finish to complete the

creation of the Qsys component, and save the component when prompted to do so.

-

A& Component Editor - reg32_avalon_interface_hw.tcl*

File Ternplates

Component Type I Files I Parameters I Signals| Interfaces |

+ About Interfaces

Name: |avalon_slave_0
Type: | Awvalon Memory Mapped Slave
Associated Clock: :dod<_sink

Associated Reset: jreset_sink

|~ Block Diagram

4
o |' Parameters

avalon_slave_0

avalon_slave_0

ead "
rite L
hipselect -
ritedata[31..0] o
eenable[3..0] N
Eiaddata 31.0 readdata

null

Address units: (WORDS |

Assodated dock: .dock_sink .

Assodiated reset: reset_sink

Bits per symbol: i

Bursteount units: (WORDS |

Explicit address span: 00000000000000C
|' Timing

Setup: V]

Read wait: 0

Write wait: 1]

Hold: 0

4

I

m

Remove Interfaces With Mo Signals

Ia Error: reset_sink: Synchronous edges DEASSERT requires associated dock

Figure 22. Specifying the clock and reset associated with the Avalon Slave interface.

Altera Corporation - University Program

April 2014

23

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

r

A& Component Editor - reg32_avalon_interface_hw.tcl* @

File Ternplates

| Companent Type | Files | Parameters | Signals| Interfaces |

b About Interfaces
| —

rull

* "reset_sink" (Reset Input)

Name: |reset_sink
Type: Reset Input -
Associated Clock: :dock_sink -
|~ Block Diagram | || [* Parameters [
Assodated dodk: dock_sink L
reset_sink Synchronous edges: |peassert - |
reset_sinkg

esetn

null

4 1

Add Interface Remove Interfaces With No Signals

(@ Info: No errors or warnings.

Figure 23. Specifying the clock associated with the reset interface.

6 Instantiating the New Component

In the Qsys Component Library, expand the newly-created item My Own IP Cores. Add an instance of the
reg32_component, to open the window shown in Figure 24. Click Finish to return to the main Qsys window. Next,
make the connections shown in Figure 25 to attach the register component to the required clock and reset signals, as
well as to the data master port of the Nios II processor. Finally, as indicated in the Export column in Figure 25, click
on Double-click to export for the Conduit and specify the name fo_hex. Notice in the Base address column in
Figure 25 that the assigned address of the new register component is 00000000. This address can be directly edited

by the user, or it can be assigned automatically by using the Assign Base Addresses command in the System
menu. In this tutorial, we will leave the address as 00000000.

24 Altera Corporation - University Program

April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

r Bl
A reg32_component - reg32_avalon_interface_0 ﬂ

“ reg32_component

Megators reg32_avalon_interface

[+ Block Diagram [

[show signals

reg32_avalon_interface_0

wvalon_slave_0

Elnck sink clock

eset_sink

onduit_end

reg32_avalon_imterface

Figure 24. Adding the reg32_component to the base system.

r B
L Qsys - embedded_system.gsys* (DA\companent_tutorialembedded_system.qsys) [E=NEER
File Edit System Generate View Tools Help

g Library g b el = tj System Contents &% Address Map £3 | ProjectSettings &% |
Y X 4F |Use Connections Mame Description Export Clock Base End IRQ
Proj i b 4 B dk_o [Clock Source
Y ew ‘. =\ s =8 ok in (Clock Input dk |exported =
1My Own P Cares - dk_in_reset Reset Input resetn =
i = —_—— dk (Clock Output dk_0
Library B a — dk_reset Reset Output
E!-Bridgas - B nios2_gsys_0 Nios IT Processor
- ClockBridge - dk (Clock Input clk_0
IRQ Bridge) reset_n Reset Input [clk]
Reset Bridge ? —_— data_master \valon Memory Mapped Master [ck] IRQ 0| IRQ 31
5-Memory-Mapped —— \.nswu:honfmasber \Avalon Memary Mapped Master [ck]
Awalon-MM Clack Crossi — J.lag,debug,module,r‘.‘ Reset Output [clk]
Avalon-MM DDR Memar: Jlag,debug,mofjule \Avalon Memary .Ma:l:led Slave [clk] 0x2800 |0xZEEE
Avalon-M Pipeline Brids msbf:m_\nstru.:hcn_m .. [Custom Instruction Master
Avalon-MM Tristate Brid B onchip_memory2_0 |On-Chip Memary (RAM or ROM)
H .. ®_TTAG tn Avalon Macter1 T ck1 (Clock Input clk_o
< T 3 s1 \Avalon Memary Mapped Slave [ck1] 0x1000 |0x1££E
resetl Reset Input [dk1]
B reg32_avalon_interf... reg32_component
avalon_slave_0 \Avalon Memary Mapped Slave [dlock_sink] 0x0000 |0x0003
clock_sink (Clock Input clk_0
!,, Hierarchy g : = o reset_sink Reset Input [clock _sink]
A conduit_end Conduit to_hex
»= dk_in
= dk_in_reset
=a clk_reset
= -k nios2_gsys_0
=k ¥
=@ custom_instruction_master
-a d_irg
=a data_master < m b
=4 instruction_master
- m= jtag_debug_module m e
- =@ jtag_debug_module_reset L
- W= resetn " Deseription Path
=-40F onchip_memory2_0
= k1
- resetl
= sl
=47k reg32_avalon_interface_0
- = avalon_slave_0 — |
- = clock_sink
L ~ ||| 0Errors, 0 Warnings

Figure 25. Required connections for the new component.

Altera Corporation - University Program 25
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

Use the Save command in the File menu to save the defined Qsys system using the name embedded_system. Next,
in the Qsys window select Generate > HDL Example..., the window in Figure 26 will show up. This window gives
an example of how the embedded system defined in the Qsys tool can be instantiated in HDL code. Note that the
clock input of our embedded system is called clk_clk, the reset input is called resetn_reset_n, and the conduit output
is named fo_hex_export.

s ~
% HDL Example [
You can copy the example HDL below to dedare an instance of your Qsys system.
HDL Language: jVeriIog -
Example HDL
embedded system ul (
.clk_clk (<connected-to-clk_clk>), clk.clk
.resetn_reset_n (<connected-to-resetn reset_n>), // resetn.reset n
.to_hex export (<connected-to-to hex export>) // to_hex.export
)i
h

Figure 26. The HDL Example tab.

26 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

Finally, open the Generation window in the Qsys tool, shown in Figure 27 by selecting Generate > Generate...,
and then click the Generate button. This action causes the Qsys tool to generate HDL code that specifies the
contents of the embedded system, including all of the selected components and the Avalon interconnection fabric.

= [—
X Generation S|

[~ Simulation [
The simulation model contains generated HOL files for the simulator, and may indude simulation-only features, P
Create simulation model: [None v |

Allow mixed-anguage simulation

[~ Testbench System
The testbench system is a new Qsys system that instantiates the original system, adding bus functional models to drive the top-evel interfaces.

Once generated, the bus functional models can interact with the system in the simulator.
Create testbench Qsys system: [None -
Create testbench simulation model: | pjgne
Allow mixedanguage simulation

|~ Synthesis
Synthesis files are used to compile the system in a Quartus II project.

Create HDL design files for synthesis: [verilog |
Create block symbol file (.bsf)

[~ Dutput Directory |
Fath: D jcomponent_tutorial fembedded_system [Z]
Simulation:

Testbench:
Synthesis: D:jcomponent_tutorial fembedded_system/fsynthesis/
Generate] [Cancel
Figure 27. The Generation tab.
Altera Corporation - University Program 27

April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

Close the Qsys tool to return to the main Quatus IT window. Next, select the command Add/Remove Files in

Project... in the Project menu, and then browse on the [« button to open the window in Figure 28. Browse to the
folder called embedded_system\synthesis. Change the filter for file types to Other Source Files and then select the
file named embedded_system.qip. This file provides the information needed by the Quartus II software to locate the
HDL code generated by the Qsys tool. In Figure 28 click Open to return to the Settings window and then click
Add to add the file to the project. Click OK to return to the main Quartus IT window.

Organize = New folder
:‘:._'_I Recent Places - Mame Date modified Type

. submodules 10/28/201310:05 ... File folder
|| embedded_system.qip 10/28/201310:05... QIP File
|| embedded_system.v 10/28/201310:04 ... VFile

4 Libraries
@ Documents
J? Music
(] Pictures

B Videos

.- Computer
&, Local Disk (C:)
a DATA (D))
s DATA (G3)

T T |

File name: ~| | Design Files (*tdf *vhd *whdI * ~|

- 4 | 3

[open || conca |

Figure 28. Adding the .gip file to the Quartus II project.

28 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

7 Implementing the Embedded System in an FPGA Chip

To implement the Qsys-generated embedded system in an FPGA chip, we need to create a top-level HDL module
which instantiates the embedded system and has the appropriate input and output signals. A suitable HDL module is
given in Figures 29 and 30, in Verilog and VHDL. The module connects the 50 MHz clock signal, CLOCK_50, on
the DE-series board to the clock input of the embedded system, and connects KEY) to the reset input. The external
conduit from the embedded system is connected to the seven segment displays HEXO, ..., HEX3. The HDL code for
the 7-segment display code converter, called hex7seg, is provided in Appendix A, in Figures 35 and 36.

Store the code for the top-level module in a file called component_tutorial.v (or .vhd), and store the code for the
seven-segment code converter in a file called hex7seg.v (or .vhd). Include appropriate pin assignments in the Quar-
tus II project for the CLOCK_50, KEY,, and HEXO, ..., HEX3 signals on the DE-series board.

Compile the project. After successful compilation, download the circuit onto the DE-series board by using the
Quartus II Programmer tool.

module component_tutorial (CLOCK_50, KEY, HEX0, HEX1, HEX2, HEX3, HEX4, HEXS, HEX6, HEX7);
input CLOCK_50;
input [0:0] KEY;
output [0:6] HEXO0, HEX1, HEX2, HEX3, HEX4, HEXS, HEX6, HEX7;

wire [31:0] to_HEX;

embedded_system UO (
.clk_clk(CLOCK_50), .resetn_reset_n(KEY[0]), .to_hex_export(to_HEX));

hex7seg hO(to_HEX
hex7seg h1(to_HEX
hex7seg h2(to_HEX[11:8], HEX?2);

[3:0], HEXO0);

[

[
hex7seg h3(to_HEX[15:12], HEX3);

[

[

[

[

3;
7:4], HEX1);

hex7seg h4(to_HEX[19:16], HEX4);

hex7seg h5(to_HEX[23:20], HEXS);

hex7seg h6(to_HEX[27:24], HEX6);

hex7seg h7(to_HEX[31:28], HEX7);
endmodule

Figure 29. Verilog code for the top-level module.

Altera Corporation - University Program 29
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS

For Quartus IT 13.1

30

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY component_tutorial IS
PORT (CLOCK_50 : IN STD_LOGIC;

KEY . IN STD_LOGIC_VECTOR(0 DOWNTO 0);
HEXO0 : OUT STD_LOGIC_VECTOR(0 TO 6);
HEX 1 : OUT STD_LOGIC_VECTOR(0 TO 6);
HEX?2 : OUT STD_LOGIC_VECTOR(0 TO 6);
HEX3 : OUT STD_LOGIC_VECTOR(0 TO 6);
HEX4 : OUT STD_LOGIC_VECTOR(0 TO 6);
HEXS : OUT STD_LOGIC_VECTOR(0 TO 6);
HEX6 : OUT STD_LOGIC_VECTOR(0 TO 6);
HEX7 : OUT STD_LOGIC_VECTOR(0 TO 6));

END component_tutorial;

ARCHITECTURE Structure OF component_tutorial IS
SIGNAL to_HEX : STD_LOGIC_VECTOR(31 DOWNTO 0);
COMPONENT embedded_system IS
PORT (clk_clk : IN STD_LOGIC;
resetn_reset_n : IN STD_LOGIC;
to_hex_export : OUT STD_LOGIC_VECTOR (31 DOWNTO 0));
END COMPONENT embedded_system;

COMPONENT hex7seg IS
PORT (hex : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
display : OUT STD_LOGIC_VECTOR(0 TO 6));
END COMPONENT hex7seg;
BEGIN
UO: embedded_system PORT MAP (
clk_clk => CLOCK_50,
resetn_reset_n => KEY(0),
to_hex_export =>to_HEX);
h0: hex7seg PORT MAP (to_HEX(3 DOWNTO 0), HEXO0);
h1: hex7seg PORT MAP (to_HEX(7 DOWNTO 4), HEX1);
h2: hex7seg PORT MAP (to_HEX(11 DOWNTO 8), HEX2);
h3: hex7seg PORT MAP (to_HEX(15 DOWNTO 12), HEX3);
h4: hex7seg PORT MAP (to_HEX(19 DOWNTO 16), HEX4);
h5: hex7seg PORT MAP (to_HEX(23 DOWNTO 20), HEXS5);
h6: hex7seg PORT MAP (to_HEX(27 DOWNTO 24), HEX6);
h7: hex7seg PORT MAP (to_HEX(31 DOWNTO 28), HEX7);
END Structure;

Figure 30. VHDL code for the top-level module.

Altera Corporation - University Program

April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS

For Quartus IT 13.1

8 Testing the Embedded System

One way to test the ciruit is to use the Altera Monitor Program. Open the Monitor Program and create a new
project called component_tutorial. In the New Project Wizard, for the Specify a system screen choose <Custom
System>, as indicated in Figure 31. As shown in the figure, under System details browse to select the system
description file called embedded_system.sopcinfo. Also, browse to select the Quartus Il programming file called
component_tutorial.sof, as illustrated in Figure 32. For the screen titled Specify a program type in the New
Project Wizard, choose No Program.

3 New Project Wizard (o]
Specify a system
~Select a sy
|<Custom System: 'l | Documentation

Specify a system by selecting a system description (SOPClnfo) file, and optional Quartus II programming
(SOF) and Quartus 1 JTAG debugging information (JDI) files.

detail
y details

System description file (SOPClnfo):

| [:/component_tutorial/embedded_system.sopcinfo | | Browse...

Quartus I programming (SOF] file (optional):

| | | Browse...

The SOF file represents the FPGA programming file for the hardware system. If it is specified here, then
the Monitor Program can be used to download this proegramming file onto the board. Otherwise, the
systemn will need to be downloaded using some other method (for example, by using Quartus II).

Quartus IJTAG debugging information (JDI) file:
| | | Browse...

The JDI file is required for multiprocessor systems designed in Qsys. It stores the JTAG Device IDs. These
1Ds are needed for communication between the Monitor Program and the system's multiple processors
and/or JTAG UARTs.

| < Back | | MNext = | | Finish | | Qancel|

Figure 31. Specifying the system description file.

Altera Corporation - University Program

April 2014

31

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

(5 New Project Wizard [SSce
Specify a system

~Selecta

Y

|<Custom System:> 'l | Documentation

Specify a system by selecting a system description (SOPClnfo) file, and optional Quartus II programming
(SOF) and Quartus 1 JTAG debugging information (JDI) files.

Y

Systern description file (SOPClnfo):

detail
details

|D:_f'component_tutoria|_f'embedded_system.sopcinfo | | Browse...|

Quartus I programming (SOF] file (optional):
|D:_a'component_tutorial_a'o utput_files/component_tutorial.sof | | Browse... |

The SOF file represents the FPGA programming file for the hardware system. If it is specified here, then
the Monitor Program can be used to download this proegramming file onto the board. Otherwise, the
systemn will need to be downloaded using some other method (for example, by using Quartus II).

Quartus IJTAG debugging information (JDI) file:

| | Browse... |

The JDI file is required for multiprocessor systems designed in Qsys. It stores the JTAG Device IDs. These
1Ds are needed for communication between the Monitor Program and the system's multiple processors
and/or JTAG UARTs.

| < Back | | MNext = | | Finish | | Qancel|

Figure 32. Specifying the Quartus II programming file.

After successfully creating the Monitor Program project, click on the command Connect to System in the Actions
menu. Open the Memory tab in the Monitor Program, and click the setting Query Memory Mapped Devices,
as indicated in Figure 33. Now, click the Refresh button to see that the content of address 0x00000000, which
represents the 32-bit register component, has the value 00000000. Edit the value stored in the register, as illustrated
in Figure 34, and observe the changes on the seven-segment displays on the DE-series board.

32 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

Memory - X
Goto address (hex): I:I Query Memory Mapped Devices
+0x0 +0xd +0x5 +0xc
Ox 00000000 oooooooo 7 7 7
Ox00000010 2 7 7 ?
Ox00000020 2 7 7 ?
Ox00000030 2 7 7 ?
Ox 00000040 2 7 7 ?
Ox00000050 2 7 7 ?
Ox 00000060 2 7 7 ?
Ox00000070 2 7 7 ?
000000080 2 7 7 7
Ox00000050 2 7 7 ?
Ox 00000040 2 7 7 7
0x000000E0 2 7 7 ?
Ox000000co 2 ? 7 7
Ox 00000000 2 7 7 ? | |
[OOAA0NED el 2 2 3 |
[E1| D

Figure 33. Using the Memory tab in the Momitor Program.

Memory - X

Gntnaddrﬁs{lm(]:l:l Query Memory Mapped Devices
+0x0) +0xd +0x8 +0xe B

= 0000o0an 12345678 ? ? ?

Ox00000010 2 7 7 ?

Ox 00000020 2 7 7 7

Ox00000030 2 7 7 ?

00000040 2 ? ? ?

Ox00000050 2 7 7 ?

0= 00000060 2 ? ? ?

Ox00000070 2 7 7 ?

Ox00000050 2 7 7 ?

Ox00000050 2 7 7 ?

O0x 00000040 2 7 7 ?

0x000000E0 2 7 7 ?

Ox0o0000Co 2 7 7 ?

Ox 00000000 2 7 7 ? | |

e OOAO0NFD el 2 el) | =4

L D]

Figure 34. Changing the value stored in the 32-bit register.

9 Concluding Remarks

In this tutorial we showed how to create a component for use in a system designed by using the Qsys tool. Although
the example is for a slave interface, the same procedure is used to create a master interface, with the only difference
being in the type of an interface that is created for the component.

Altera Corporation - University Program 33
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS

For Quartus IT 13.1

10 Appendix A

The HDL code for the seven-segment code converter that is instantiated in Figures 29 and 30 is shown in Figures 35

and 36.

34

module hex7seg (hex, display);
input [3:0] hex;
output [0:6] display;

reg [0:6] display;

always @ (hex)
case (hex)

4'h0: display = 7'b0000001;
4'hl1: display = 7'b1001111;
4'h2: display = 7'b0010010;
4'h3: display = 7'b0000110;
4'h4: display = 7'b1001100;
4'hS: display = 7'0100100;

4'h6: display = 7'b0100000;
4'h7: display = 7'b0001111;
4'h8: display = 7'b0000000;
4'h9: display = 7'0001100;
4'hA: display = 7'b0001000
4'hb: display = 7'b1100000;

bl

4'hC: display = 7'b0110001;

4'hd: display = 7'b1000010;

4'hE: display = 7'b0110000;

4'hF: display = 7'b0111000;
endcase
endmodule

Figure 35. Verilog code for the seven-segment display code converter.

Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS

For Quartus IT 13.1

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY hex7seg IS
PORT (hex : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
display : OUT STD_LOGIC_VECTOR(0 TO 6));
END hex7seg;

ARCHITECTURE Behavior OF hex7seg IS
BEGIN
- —0-
-- 51 1
- —6—
-- 41 12
- e
PROCESS (hex)
BEGIN
CASE hex IS
WHEN "0000" => display <= "0000001";
WHEN "0001" => display <= "1001111";
WHEN "0010" => display <= "0010010";
WHEN "0011" => display <= "0000110";
WHEN "0100" => display <= "1001100";
WHEN "0101" => display <= "0100100";
WHEN "0110" => display <= "0100000";
WHEN "0111" => display <= "0001111";
WHEN "1000" => display <= "0000000";
WHEN "1001" => display <= "0001100";
WHEN "1010" => display <= "0001000";
WHEN "1011" => display <= "1100000";
WHEN "1100" => display <= "0110001";
WHEN "1101" => display <= "1000010";
WHEN "1110" => display <= "0110000";
WHEN "1111" => display <= "0111000";
END CASE;
END PROCESS;
END Behavior;

Figure 36. VHDL code for the seven-segment display code converter.

Altera Corporation - University Program
April 2014

35

http://www.altera.com/education/univ/

MAKING QSYS COMPONENTS For Quartus 11 13.1

Copyright © 2013 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the
U.S. and other countries. All other product or service names are the property of their respective holders. Altera
products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and
copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without
notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product,
or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are
advised to obtain the latest version of device specifications before relying on any published information and before
placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties, repre-
sentations or guarantees of any kind (whether express, implied or statutory) including, without limitation, warranties
of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

36 Altera Corporation - University Program
April 2014

http://www.altera.com/education/univ/

	1 Introduction
	2 Introduction to Qsys
	3 What is a Qsys Component?
	4 Avalon Memory-Mapped Interface Details
	5 Adding a New Component to the Qsys Component Library
	6 Instantiating the New Component
	7 Implementing the Embedded System in an FPGA Chip
	8 Testing the Embedded System
	9 Concluding Remarks
	10 Appendix A

