fAtl IIERA Creating Multiprocessor Nios I
Systems Tutorial

May 2006, Version 6.0 Tutorial

1T {00 T 2
Benefits of MultiproCeSSOr SYStEMS ... —————————— 2
NiOS [l MUItIPrOCESSOr SYSIEMScueiererericccessrre e s s E e EnE s s s E e e 2
Hardware Design CoNSIAErations.........cou v 3
AULONOMOUS MUITIPIOCESSOISe.teueeuienieueetietesteetetesteteet e eteeteeteteseeseeseeseaseese b eneemeestesees e et e s e s emeeneeseeseebeese s eneeneeseeseeseeseasebensenseneeseaneatenbens 3
MultiprocesSors that SHATE RESOUICESecvieieiiiriieieiietestiete st ete st ete st estesteestesteessesseessesseessesseassasseesseseassensesssenseansenseensesssensesseensensen 3
Sharing Resources in a Multiprocessor System w4
SRATINZ MEIMOTY ...ttt ettt ettt ettt ettt bt e bttt e st e bt e bt et et e st et e st eu e e bt e bt bt s e et et e et eaeeb e e bt st et et eneeneebesbenaenne 5
The HArdWare IMULEX COTEccuvieiieiiieiieeeteetteeteestteeteestteesteestteesseessseessaasssaeseesssaeassaasseassseessaessseanseessseesssansseessseensaessseeseessseenseens 5
Ni0S II Systems Without @ IMULEX COTEeiuerieieuieiietieieiteet et cete ettt eteste et e st et eteebe st et et eseeseebe et et e s eseeneeseasesse st e s enseneeneeneeneaeeanens 6
Sharing Peripherals between MUItIPIE PrOCESSOTSc.iiiiriiiierierieieiieiestestestteteseestesteesbesteessesseessesseessesseessessaessesssensesseessesseensenses 6
Multiprocessors & OVErlapping AQAIESS SPACE ...c.eeueruieriertieieeitetesteete st et st et e steete s bt et e steestesseeatesseentesstensesseensesseensesseensenseansenseensensean 7
Software Design Considerations
PrO@ram MEIMIOTYc.couiiiiiiiiiiiiet ettt ettt e b e et b et b e e as e b e st e bt eaa e bt et e e bt eab e bt e ab e s bt e b e s bt e b e she et e e aeennesbeeanenaeen
BOOT AQAIESSESe.vvieitieeitieeite ettt et e et e et e ete e bt e ettt esteeeabe e seeasse e saeessaesssaanseesssaessaeesseenseeesseensseenseeesseentaeesseenseeesbeesseeenseetaeenbeesteenraeseas
Running & Debugging Multiprocessor Systems from the Nios I IDE
DESIGN EXAMPIE ...t E e R
Hardware and Software REQUITEIMIENLS.c.eeverierieriieieriesiesteeteestestesteeteeteseaebeeseessesseesseaseessesssesseassessesssessesssensesseensenssessesssensenssensenes
Creating the HArdWare SYSEEIMccueuiiiiiieieteeiete ettt ettt et e et et e st ebe e st estesseenbeeseentesseenseeseentesseenseeseanseestenseensensesseensesneansenen
Getting Started with a Standard EXample DESIZIc..ceiuiriiriiiiiiiiiee ettt ettt sttt et sbe et sbe et e sbeeneens
AQdING 8 SECONA PTOCESSOT.euteuieiietietietieterte ettt ettt e s et ettt et et et e st e st es e et e et et emees e es e es e et e b e s emseseenees e et e ebe et et eneeneeneasesbesenes
Adding a Third Processor ...
AdAING @ TIMET fOT CPUZ.....eotiiiieiieiieee ettt ettt ettt e e te st e bt eat e tesatenbeeseentesaeenseeseensesstenseeseentesseenseestensesseensesseensesseensennes
AdAING @ TIMET OT CPUS ...ttt ettt h ettt e bt s bt e bt e bt et e sheea bt eh e e te s bt eabeeb e embeebeenbeestenteebeenbeebeenbenbeensennes
AddINg 8 HATAWATE IMULEX......c..eteuieiietietiitiet ettt ettt ettt et e et et et e st eseesees e et e e b e e emeeseeseeseebeab e s emeeseeneeseebeebeabenseneeneeneabeneensenes
Adding @ MesSage BUfEr IMEIMOTYcc.eiieiiriieiesieeieieetesie st te et e et esteeteetesseesaeesaessesseensesseessasssensesseensesssassensesssesssensensesssensens 16
ConnNecting SNATEA RESOUICES........cc.viiuieieiiiiieti ettt ettt ettt ettt et e b et tebe et e e teebe e besseentesseensesseentesseenseeseentesseensesseensesseansensesnnensenn 16
Setting Reset and EXCEPHON AQAIESSESccuveruiiiiiieiieieiiete ettt ettt ettt et s b et esbesatesbe e st et e esbenbeestenbesseenbeensentenne 17
Generating and ComPiling the SYSLEIM.couiriiiiiiiiiee ettt ee ettt st et e e st e st e st et e s be b e s enee st eneesesbensenes 18
Creating Software for the Multiprocessor SYStem ... —————— 19
Starting the Nios II IDE........cccoocvvvveniniieneiieeeeeiee,
Creating a Software Project for cpul
Creating a SOftWare PTOJECE TOT CPUZcuiiiiiiiiiiiiieeet ettt ettt b et e bt et s bt et e e bt et e s bt e beeat et e s bt e beeabentesaeebeeneentenee 21
Creating @ SOFtWare Project fOI CPUSc.oi ettt s sttt et e b et en e st e st eb e ebesbe s e s e e eneeseebesbesenes 22
BUuilding the SOTEWAIE PIOJECLScviiieiiitietieieieeiete ettt stet e et et e st et e et este s et esbeeteessesseesseeseessesssenseassessesssesseassensesssenseassensesssensenssensenes 22
Setting up the Nios II IDE for Multiprocessor Debug .23
Creating a Debug Configuration for EACh PTOCESSOTc..oiuiiiiiiiiiiiiieieei ettt sttt ettt be e ene e 23
Creating @ MUultiproCESSOT COIIECTIONeouiiititiiei ettt ettt ettt es bttt et et et en e es e eseebe et et e s eneeseeneeseebeebe s enseneeneeneebeseensenes 24
Starting the MultiproCeSSOT COIIECLIONcveiuieiirieieiierieeteete st ete et et e st et e eteestesstessesteessesseesseaseessesseassesseessesssensesseensesseesseeseensesseensenses 25
Debugging the Software Projects on the BOAdccoeiiiiiiiiiiiiiieceee ettt et sttt sttt e teseeenbesneente e 26
Altera Corporation 1

TU-N2033005-1.1

Introduction

Introduction

Any system which incorporates two or more microprocessors working together to perform a task is commonly
referred to as a multiprocessor system. Developers using Altera’s Nios II processor and SOPC Builder tool can
quickly design and build multiprocessor systems that share resources. SOPC Builder is a system development tool
for creating SOPC design systems based on processors, peripherals, and memories. A Nios II processor system
typically refers to a system with a processor core, a set of on-chip peripherals, on-chip memory and interfaces to
off-chip memory all implemented on a single Altera device.

This document describes the features of the Nios II processor and SOPC Builder tool that are useful for creating
systems with two or more processors. This document provides an example design that guides you through a step-
by step process for building a multiprocessor system containing three processors that all share a memory buffer.
Using the Nios II Integrated Development Environment (IDE), you will create and debug three software projects,
one for each processor in the system.

After completing this document, you will have the knowledge to perform the following:

Build an SOPC Builder system containing more than one Nios II processor.
Safely share resources between processors avoiding data corruption.

Build software projects for multiprocessor systems using the Nios II IDE.

Debug multiple software projects running on multiple processors using the Nios II IDE.

This chapter assumes that you are familiar with reading and writing embedded software and that you have read
and followed the step-by-step procedures for building a microprocessor system in the Nios Il Hardware
Development Tutorial. This tutorial can be found on the Nios II Processor Literature page at
http://www.altera.com/literature/lit-nio2.jsp.

Benefits of Multiprocessor Systems

Multiprocessor systems possess the benefit of increased performance, but nearly always at the price of
significantly increased system complexity. For this reason, the use of multiprocessor systems has historically been
limited to workstation and high-end PC computing using a complex method of load-sharing often referred to as
symmetric multi processing (SMP). While the overhead of SMP is typically too high for most embedded systems,
the idea of using multiple processors to perform different tasks and functions on different processors in embedded
applications (asymmetrical) is gaining popularity. Altera FPGAs provide an ideal platform for developing
asymmetric embedded multiprocessor systems since the hardware can easily be modified and tuned using the
SOPC Builder tool to provide optimal system performance. Furthermore, with a powerful integration tool like
SOPC Builder, different system configurations can be designed, built, and evaluated very quickly.

Nios Il Multiprocessor Systems

Multiprocessor

The Nios II IDE version 5.0 and higher includes features to help with the creation and debugging of
multiprocessor systems. Multiple Nios II processors are able to efficiently share system resources thanks to the
multimaster friendly slave-side arbitration capabilities of the Avalon bus fabric. Since the capabilities of SOPC
Builder now allow users to almost effortlessly add as many processors to a system as desired, the design challenge
of building multiprocessor systems no longer lies in the arranging and connecting of hardware components. The
design challenge in building multiprocessor systems now lies in writing the software for those processors so they
operate efficiently together, and do not conflict with one another.

2 Altera Corporation
May 2006

Hardware Design Considerations

To aid in the prevention of multiple processors interfering with each other, a hardware mutex core is included in
the Nios II Embedded Design Suite (EDS). The hardware mutex core allows different processors to claim
ownership of a shared resource for a period of time. This temporary ownership of a resource by a processor
prevents the shared resource from becoming corrupted by the actions of another processor. To learn more about
the hardware mutex core, see the Mutex Core with Avalon Interface in the Quartus II Handbook, Volume 5.

Performing software debug on multiprocessor systems is made easier with the Nios II IDE, allowing users to
launch and stop software debug sessions on different processors with a single operation.

Hardware Design Considerations

Nios II multiprocessor systems are split into two main categories, those that share resources, and those in which
each processor is autonomous and does not share resources with other processors.

Autonomous Multiprocessors

While autonomous multiprocessor systems contain multiple processors, these processors are completely
autonomous and do not communicate with the others, much as if they were completely separate systems. Systems
of this type are typically less complicated and pose fewer challenges because by design, the system’s processors
are incapable of interfering with each other’s operation. Figure 1 shows a block diagram of two autonomous
processors in a multiprocessor system.

Figure 1: Autonomous Multiprocessor System

Memory 1

Processor 1 L UART 1

Timer 1

Memory 2

UART 2

Processor 2

Timer 2

Multiprocessors that Share Resources

Multiprocessor systems that share resources can pose many more challenges. While the Nios II EDS includes
features making it possible to reliably implement multiprocessor systems that share resources, the creation of such
systems is not necessarily a straightforward venture. Altera recommends that you complete this tutorial and fully
understand its recommendations before attempting to create a resource-sharing multiprocessor system.

Altera Corporation 3
May 2006 Multiprocessor

Sharing Resources in a Multiprocessor System

Sharing Resources in a Multiprocessor System

Multiprocessor

Resources are considered shared when they are available to be accessed by more than one processor. Shared
resources can be a very powerful aspect of multiprocessor systems, but care must be taken when deciding which
system resources are shared, and how the different processors will cooperate regarding the use of resources. Figure
2 shows a block diagram of a multiprocessor which shares resources.

Figure 2: Multiprocessor System with Shared Resource

Processor 1

Processor 2

Memory 1

UART 1

Timer 1

Shared
Memory

Memory 2

Timer 2

Resources can be made shareable by simply connecting them to multiple processor bus masters in the connection
matrix of SOPC Builder, but that in no way guarantees that the processors that share them will do so non-

destructively. The software running on each processor is responsible for coordinating access to shared resources
with the system’s other processors. Figure 3 shows a multiprocessor system in which two processors share an on-
chip memory. The on-chip memory is considered shared because the data master ports of both processors are
connected to the same slave port of the memory. Since cpul and cpu2 are both physically capable of writing

blocks of data to the shared memory at the same time, the software for those processors must be written carefully

to protect the integrity of the data stored in the shared memory.

Altera Corporation
May 2006

Sharing Resources in a Multiprocessor System

Figure 3: Multiprocessor System Sharing On-Chip Memory

File Modue System iew Debug Tools Help

Bioard Settings | Mios T1 More *cput” Settings | Nios T More *cpu2” Settings | System Generation

#5) bltera SOPC Buiider ~
B3] Craate News Corponert
= Avalon[Zomponents
@ Nios Il Processor - At
Briages
= Communication
@ JTAG USRT
@ SPI(3vire Sers
® UART (R5-232 3¢
Display
EP1C20 Hios Developr
EP1510 Hios Develop
EP1540 Hios Develop
EP2C35 Hios Developm
EP2560 DSP Board Stra
EP2560 Hios Develop
Ethernet
Extra Utilities

#

W OEE R R

v

< >
. Al Available Companents
&p | O

Target

Use

Clock (MHz)

Board: [Mios Development Board, Cyclone (EP1C20) & ok 50.0
Modlle Name Description

B eput Iuios I Processar - Attera Corporation
———— instruction_master Master port
——¢ data_master Master port

fan_debug_module
onchip_memory_1
timer 1
uart 1

B cpu2
instruction_master
data_master
ag_debug_madule
onchip_memory_2
timer_2
shared_memory

Slave port

lon-Chips Memary (RAM or ROM)
Intervaltiner

UART (RS-232 serial port)

INicss | Processar - Atera Corparation
Master port

Master port

(Slave port

(On-Chip Memary (RAM o ROM)
Intervaltimer

(On-Chips Metmary (RAM or ROM)

Clack
cl

ol
=13
ol
clk

chk
ol
ok

A tovelp |

[+ woveDown

Base

1RG0
0x00002000
000000000

End

IRG 31
Dx000027FF|
Dx00000FFF|

IRQ | IRQ

1

0x00002820

IRQ 0
0x00002000
0x00000000
000002800
000001000

Dx0000283F |

IRQ 31
Dx000027FF|
0x00000FFF
D:x0000251F|
0x00001 FFF|

EE
i K

SOPC Builder 5.00 | 2 eput wes generated with ful capabilties and must be compiled in Quartus Il with the same license ~
@MODULE cpul: eput; The reset address points ta volatile memory. Exscution of undefined code may occur upon reset

v epu2: The reset address paints t volatile memory. Execution of untiefined cole may oocur Upon reset.
< > [2) epu was generated with full capabillies and must be compiled in Quartus Il with the same license 3

Altera Corporation
May 2006

Sharing Memory

The most common type of shared resource in multiprocessor systems is memory. Shared memory can be used for
anything from a simple flag whose purpose is to communicate status between processors, to complex data
structures that are collectively computed by many processors simultaneously.

If a memory component is to contain the program memory for more than one processor, each processor sharing
the memory is required to use a separate area for code execution. The processors cannot share the same area of
memory for program space. Each processor must have its own unique .text, .rodata, .rwdata, heap, and stack
sections. See Software Design Considerations for information on how to make sure each processor sharing a
memory component for program space uses a dedicated area within that memory.

If a memory component is to be shared for data purposes, its slave port needs to be connected to the data masters
of the processors that are sharing the memory. Sharing data memory between multiple processors can be trickier
than sharing instruction memory because data memory can be written to as well as read. If one processor is
writing to a particular area of shared data memory at the same time another processor is reading or writing to that
area, data corruption will likely occur, causing application errors at the very least, and possibly a system crash.

The processors sharing memory need a mechanism to inform one another when they are using a shared resource,
so the other processors do not interfere.

The Hardware Mutex Core

The Nios II processor provides protection of shared resources with its hardware mutex core feature. This hardware
mutex core is not an internal feature of the Nios II processor, but a small SOPC Builder component named Mutex.

The term mutex stands for “mutual exclusion®, and a mutex does exactly as its name suggests. A mutex allows
cooperating processors to agree that one of them should be allowed mutually exclusive access to a hardware
resource in the system. This is useful for the purpose of protecting resources from data corruption that can occur if
more than one processor attempts to use the resource at the same time.

Multiprocessor

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

Sharing Resources in a Multiprocessor System

Multiprocessor

The mutex core acts as a shared resource, providing an atomic “test and set” operation in which a processor may
test if the mutex is available and if so, acquire it in a single operation. When the processor is finished using the
shared resource associated with the mutex, the processor releases the mutex. At this point, another processor may
acquire the mutex and use the shared resource. Without the mutex, this kind of function would normally require
two separate “test” and “set” instructions between which, another processor could also test for availability and
succeed. This situation would leave two processors both thinking they successfully acquired mutually exclusive
access to the shared resource when clearly they did not.

It is important to note that the mutex core does not physically protect resources in the system from being accessed
at the same time by multiple processors. The software running on the processors is responsible for abiding by the
rules. The software must be designed to always acquire the mutex before accessing its associated shared resource.

Another kind of mutex, called a software mutex is common in many operating systems for providing the same
protection of resources. The difference is that a software mutex is purely a software construct that is used to
protect hardware resources from being corrupted by multiple processes running on the same processor. A
hardware mutex core is an SOPC Builder component with an Avalon interface that uses logic to guarantee only
one processor is granted the lock of the mutex at any given time. This means that as long as every processor waits
until it locks the mutex before using the associated shared resource, the resource will be protected from corruption
due to simultaneous access by multiple processors. Each processor must first request a lock of the mutex core
before accessing the associated shared resource.

Nios Il Systems without a Mutex Core

In most cases, a mutex core should be used to protect any resource shared between multiple processors. However,
there are some limited cases when a mutex core may not be necessary. Such cases might include one way or
circular message buffer arrangements where only one processor ever writes to a particular set of memory locations.
However, sharing resources safely without a mutex core can be complicated. When in doubt, using the mutex core
is highly recommended.

Sharing Peripherals between Multiple Processors

In general, with the exception of the mutex core, Nios II EDS does not support sharing non-memory peripherals
between multiple processors.

Sharing peripherals in multiprocessor systems presents some difficult challenges, and is generally considered to be
inefficient system design. The biggest problems arise for peripherals with interrupts. If a peripheral is allowed to
interrupt all the processors which share it, there is no reliable way to guarantee which processor will respond first
and service that interrupt. Additionally, if the peripheral is used as an input device for multiple processors, it
becomes difficult to determine which processor is supposed to collect given input from the device. While it is
conceivable that a complex system of handshaking could be created to handle these scenarios, it is beyond the
scope of this document, and is unsupported by the Nios Il hardware abstraction layer (HAL) library. For more
information on the Nios Il HAL Library, see the Nios Il Software Developer’s Handbook.

Altera recommends that each non-memory peripheral be accessible by only one processor in the system. If other
processors require use of the peripheral, they should use a message buffer that is either mutex-protected or
otherwise multiprocessor safe when communicating with the processor that is connected to that peripheral.

When building any system, especially a multiprocessor system, it is advisable to only make connections between
peripherals that require communication. For instance, if a processor runs from and uses only one on-chip memory,
there is no need to connect that processor to any other memory in the system. Physically disconnecting the
processor from memories it is not using both saves FPGA resources and guarantees the processor will never
corrupt those memories.

6 Altera Corporation
May 2006

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

Sharing Resources in a Multiprocessor System

In single processor systems, SOPC Builder will usually make intelligent default choices for connecting master and
slave components. However, in multiprocessor systems the need to connect different components is much more
design dependent. Therefore, when designing multiprocessor systems, it is important to explicitly verify that each
component is connected appropriately.

Multiprocessors & Overlapping Address Space

Single-processor systems typically prohibit more than one slave peripheral from occupying the same address space
because it will cause conflicts. In multiprocessor systems however, it is possible for separate slave peripherals to
occupy the same base address and not conflict, as long as each of those peripherals is exclusively mastered by a
different processor. Since every slave peripheral is not necessarily mastered by every processor, each processor
may have a different view of the system. If processor A is connected to a slave peripheral mapped to address
0x4000, processor B may connect to a separate slave peripheral, also mapped to address 0x4000, as long as
processor A is not connected to processor B’s slave peripheral and processor B is not connected to processor A’s
slave peripheral. In effect, the point-to-point connectivity allows the two processors to have separate address
spaces. See Figure 4 for a block diagram of a multiprocessor system which has different slave peripherals mapped
to the same base address. Figure 5 shows an example in SOPC Builder of a multiprocessor system with different
slave peripherals mapped to the same base address.

Figure 4: Multiprocessor Slave Peripherals Mapped to the Same Base Address

FPGA Design
0x00000000
Memory 1
0x00100000
Processor 1 UG
0x00200000
Timer 1
0x00300000
Shared
0x00300000 Memory
0x00000000
Memory 2
Processor 2
0x00500000
UART 2
0x00600000
Timer 2
Altera Corporation 7

May 2006 Multiprocessor

Software Design Considerations

Figure 5: SOPC Builder Example of Multiprocessor Slave Peripherals Mapped to the Same Base Address

1™ jltera SOPC Builder - std_1c20 E@g‘

Fie Modue System View Debug Took Help
System Conterts | Board Settings | Nios I More "cpud” Settings | Nios I More "cpu2” Settings | System Generation
153 Aera SOFC Bl A
B B3 Create New Comporent TR (E2Els ()
= Avalon Components Boarct |hios Development Board, Cyclone (EP1C200 v clk 50.0
@ Mios Il Processor - Al
+ Bridges
= Communication
@ JTAG UART
@ SPI (3 Wire Serial Use Maciule Narme Desctiption Clock Base End IRQ | IRG
@ UART (RS-2325¢ B cput [ios Il Processar - Atera Carpo...jclk
& Display ——— instruction_master Master port
® EP1C20 Hios Developr p— data_master Master port RGO IR& 31 <~|
® EP1S10 Hios Developrr Jtao_debun_module Slave port 0x00002000 0x000027FF|
& EP1SA0 Hios Developr] onchip_memory_1 [On-Chip Memary (RAM ar ROM) [l 0x00000000| Dx000N0FFF
& EP2C35 Hios Developm timer_1]mervalt\mer elk 0x00002800] 0x0000281F|[0
& EP2S60 DSP Board Stra Eep2 s i Processor - Atera Como. el
% EP2560 Hios Developr instruction_master Master port
Ethernet 3 data_master Mzster port IRG 0| IR& 3
Jtaa_debug_odule Slave port 0x00002000| Ox00027FF
U b onchip_memory_2 lOn-Chip Memary (RAM ar ROM) el 0x00000000| 0x00000FFF
. All Available Companents timer_2 Interval timer el 0x00002800, 0x0000Z81F| [0
I AR - shared_memory |On-Chip Mermary (RAM or ROM) [clk 0x000041000] 000001 FFF
avovets] [Morebown
S0PC Builder 5.00 A | [T) eput was generated with full capabilties and must be compiled in Gusrtus | with the same license. ~
EMODULE cpul: cput: The reset address points to volatile memory. Execution of undefined code may occur upon reset
A cpu2: The reset address points to volatile memory. Execution of undefined code may oeour Upon reset
< ¥ 5] epu2 was generated with full capabilties and must be compiled in Quartus || with the same license. ~

Software Design Considerations

Multiprocessor

Creating and running software on multiprocessor systems is much the same as for single-processor systems, but
requires the consideration of a few additional points. Many of the software design issues described in this section
are dictated by the system’s hardware architecture.

Program Memory

When creating multiprocessor systems, you may want to run the software for more than one processor out of the
same physical memory device. Software for each processor must be located in its own unique region of memory,
but those regions are allowed to reside in the same physical memory device. For instance, imagine a two-
processor system where both processors run out of SDRAM. The software for the first processor requires 128
Kbytes of program memory, and the software for the second processor requires 64Kbytes. The first processor
could use the region between 0x0 and Ox1FFFF in SDRAM as its program space, and the second processor could
use the region between 0x20000 and 0x2FFFF.

Nios II and SOPC Builder provide a simple scheme of memory partitioning that allows multiple processors to run
their software out of different regions of the same physical memory. The partitioning scheme uses the exception
address for each processor, which is set in SOPC Builder, to determine the region of memory from which each
processor will be allowed to run its software. Although the Nios II IDE is ultimately responsible for the linking of
the processors’ software and determining where the software will reside in memory, the Nios II IDE looks at the
exception addresses that were set for each processor in SOPC Builder to calculate where the different code
sections will be linked. The Nios I IDE provides each processor its own section within memory from which it can
run its software. If the software for two different processors is linked to the same physical memory, then the
exception address of each processor is used to determine the base address of the region which that processor’s
software can occupy. The end address of the region is determined by the next exception address found in that
physical memory, or the end of that physical memory, whichever comes first.

For any single or multiprocessor system, there are five primary code sections that need to be linked to fixed
addresses in memory for each processor. These sections are:

8 Altera Corporation
May 2006

Software Design Considerations

. text — the actual executable code

.rodata — any read only data used in the execution of the code

|

|

B .rwdata — where read/write variables and pointers are stored
B heap — where dynamically allocated memory is located

|

stack — where function call parameters and other temporary data is stored

See Figure 6 for a memory map showing how these sections are typically linked in memory for a single processor
Nios system.

Figure 6: Single Processor Code Linked in Memory Map
1 Mbyte Memory

OXO00FFFFF
stack
heap
.rwdata
.rodata
text
0x00000000

In a multiprocessor system, it may be advantageous to use a single memory to store all the code sections for each
processor. In this case, the exception address set for each processor in SOPC Builder is used to define the
boundaries between where one processor’s code sections end and where the next processor’s code sections begin.

For instance, imagine a system where SDRAM occupies the address range 0x0 — OxFFFFF and processors A, B
and C each need 64 Kbytes of SDRAM to run their software. By using SOPC Builder to set their exception
addresses 64 Kbytes apart in SDRAM, the Nios II IDE will automatically partition SDRAM based on those
exception addresses. See Figure 7 for a memory map showing how the SDRAM will be partitioned in this
example system.

Altera Corporation 9
May 2006 Multiprocessor

Software Design Considerations

Figure 7: Partitioning of SDRAM Memory Map for Three Processors

1Mbyte Memory

OXO0FFFFF

stack

heap

.rwdata

Processor 3:

.rodata

text

Exception Address —p 0x00020020
Code Entry Point — - 0400020000

Processor 2:
Exception Address —» 0,00010020
Code Entry Point — - 9500010000

Processor 1:
Exception Address —» 0x00000020
Code Entry Point g 0x00000000

stack

heap

.rwdata
.rodata

text

Processor 3

N

.rwdata

>— Processor 1

.rodata

text

Note that the lower six bits of the exception address are always set to 0x20. Offset 0x0 is where the Nios II

processor must run its reset code, so the exception address must be placed elsewhere. The offset of 0x20 is chosen
because it corresponds to one instruction cache line. The 0x20 bytes of reset code initializes the instruction cache,
and then branches around the exception section to the system startup code.

Care must be taken when partitioning a physical memory to contain the code sections of multiple processors.

There are no safeguards in SOPC Builder or the Nios II IDE that guarantee you have provided enough code space
for each processor’s stack and heap in the partition. If inadequate code space is allotted in memory, the stack and
heap may overflow and corrupt the processor’s code execution.

Multiprocessor

10

Altera Corporation
May 2006

Software Design Considerations
I EEEEEEEEE——

Boot Addresses

In multiprocessor systems, each processor must boot from its own piece of memory. More than one processor
may not boot from the same bit of executable code at the same address in the same non-volatile memory. Boot
memory can also be partitioned, much like program memory can, but the notion of sections and linking is not a
concern as boot code typically just copies the real program code to where it has been linked in RAM, and then
branches to the program code. To boot multiple processors out of separate regions with the same non-volatile
memory device, simply set each processor’s reset address to the location from where you wish to boot that
processor. Be sure you leave enough space between boot addresses to hold the intended boot payload. See Figure
8 for a memory map of one physical flash device from which three processors can boot.

Figure 8: Flash Device Memory Map with Three Processors Booting

1Mbyte Flash Memory

OXO0FFFFF

Program Data

> Processor 3

Boot Loader

0x00020000
0x0001FFFF

Program Data

> Processor 2

Boot Loader

0x00010000 B,
0x0000FFFF Boot loader
Program Data
> Processor 1
0x00000000 Boot Loader D,

The Nios II flash programmer is able to program bootable code for multiple processors into a single flash device.
The flash programmer looks at the reset address of each processor and then uses that reset address to calculate the
offset within the flash memory where the code will be programmed. See the Nios Il Flash Programmer User
Guide for details about the flash programmer.

Running & Debugging Multiprocessor Systems from the Nios Il IDE

The Nios II IDE includes a number of features that can help in the development of software for multiprocessor
systems. Most notable is the ability of the Nios II IDE to perform simultaneous on-chip debug for multiple

Altera Corporation 11
May 2006 Multiprocessor

Design Example

processors. Multiple debug sessions can run at the same time on a multiprocessor system and can pause and
resume each processor independently. Breakpoints can also be set individually per processor. If one processor hits
a breakpoint, it will not halt or affect the operation of the other processors. Debug sessions can be launched and
stopped independently.

Debug sessions for multiple processors can also be launched in a single operation with the Nios II IDE, using a
feature called multiprocessor collections. Multiprocessor collections are groups of debug configurations for
individual processors that are combined under one configuration name. The benefit of a multiprocessor collection
is that any time the collection is launched; the Nios II IDE individually launches each of the single debug
configurations in the background. This allows users to launch debug sessions for multiprocessor systems without
having to manually launch a session for each processor. Multiprocessor collections can also be stopped with one
operation, however pausing and resuming multiprocessor collections together is not currently supported.

The launching and stopping of multiprocessor collections is not simultaneous, meaning the processors in the
collection do not start executing code on the same clock cycle. In fact, there may be a delay of a few seconds
between the individual processors being started. The purpose of multiprocessor collections is to make it more
convenient to launch debug sessions for multiprocessor systems, not to synchronize the processors. If you want
the multiple processors to start within a shorter period of time, a separate hardware or software mechanism will
need to be constructed.

Design Example

Multiprocessor

The following exercise shows you how to build a 3-processor Nios II system with SOPC Builder, starting with the
standard example design as a template. You will create 3 software projects in the Nios II IDE, one for each
processor. The software for all 3 CPUs will generate messages to be displayed and use the hardware mutex core to
put those messages in a shared message buffer. cpul will continually check the message buffer for new messages,
and if it finds one, will print it using the jtag_uart.

Hardware and Software Requirements
To use this design example you must have the following:

B Quartus II Software version 5.0 or higher — Both Quartus I Web Edition and the fully licensed version will
work with the example design.

B Nios II Development Kit version 5.0 or higher — There are five available kits which include a Nios
development board and an Altera USB Blaster download cable (optional). You can use any of the following
Nios II Development Kits:

@ Stratix II Edition
Stratix Edition
Stratix Professional Edition

Cyclone II Edition

Cyclone Edition

If you do not have a development board, you can follow the hardware development steps, but you will not be able
to download the complete system to a working board.

You can download the Quartus II Web Edition software and the Nios II EDS for free from the Altera Download
Center at www.altera.com.

12 Altera Corporation
May 2006

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

Design Example

I EEEEEEEEEEEEEE——
Before you begin, you must install the Quartus II software and the Nios II EDS.

Creating the Hardware System

In the following steps you will create a multiprocessor system by starting with the standard hardware example
design included in the Nios I EDS, and adding two additional processors, two additional timers, and a hardware
mutex component. You can use the standard hardware example design for any of the Nios development boards,
and the resulting system will run on that development board. If you do not have a Nios development board, you
can still follow these steps to learn how to design multiprocessor hardware.

Getting Started with a Standard Example Design
To begin building a multiprocessor system sharing resources, perform the following steps:

Browse to the examples directory for your board. Each of the board-specific project files are found in the
following directory: <Nios Il EDS install path>\examples\ <hd[>\<development board>\standard. Table 1 lists
the names of the board-specific directories and Quartus II project file.

Table 1: Project File Directory

Project File for

Nios Development Board Board-Specific Directory Microprocessor Tutorial
Stratix Il Edition niosl|_stratixll_2s60_es standard.qpf
Stratix Edition niosll_stratix_1s10 & standard.qpf
niosl|_stratix_1s10_es
Stratix Professional Edition niosl|_stratix_1s40 standard.qpf
Cyclone Il Edition niosll_cyclonell_2c35 standard.qpf
Cyclone Edition niosll_cyclone_1c20 standard.qpf

1. Copy the standard example design project directory for the board you are using to a working directory
named C: /Multiprocessor_Tutorial or to a directory of your choice. Make sure the path has no spaces.

2. Open the Quartus II software.
3. On the File menu, click Open Project (not Open).
4. Browse and load the standard.qpf project file from the newly-created directory.

5. On the Tools menu, click SOPC Builder.

In this tutorial, you must name the hardware components exactly. If your component names differ from
CAUTION

the names printed here, the software example will not work.
6. Right-click cpu and click Rename.

7. Type cpul to rename the processor then press Enter.

Altera Corporation 13
May 2006 Multiprocessor

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

Design Example

Multiprocessor

8. Right-click sys_clk_timer and click Rename.
9. Type cpul timer and press Enter. This will be your timer for cpul.

10. Click Move Up several times to move cpul_timer under cpul.

Adding a Second Processor

In the next series of steps, you will add a second Nios II processor to the system. A Nios II/s will be added
because it is a good general-purpose choice.

To add a second processor, perform the following steps:

1. Double-click Nios II Processor — Altera Corporation in the list of available components to add a second
Nios II processor to the system. The Nios II Core wizard appears.

2. Select NiosIl/s as the type of processor.

3. Click the JTAG Debug Module tab.

4. Select Level 1 as the debugging level for this processor.
5. Click Finish.

You will see error messages in the SOPC Builder messages window. This is because SOPC Builder does not
know that you plan to connect this processor with other components in the system. Ignore the error messages
for now. You will fix these errors in later steps.

6. Right-click the newly-added processor and click Rename.
7. Type cpu2 and press Enter.

8. Click Move Up several times to move cpu2 under cpul_timer.

Adding a Third Processor

In the next series of steps, you will add a third Nios II processor to the system. An economy (NiosIl/e) variety of
Nios II will be added to demonstrate that any Nios II variety processor can be used in a multiprocessor system.

To add the third processor, perform the following steps:
Repeat steps 1-8 above to add a third Nios II processor with the following exceptions:

@ In the Nios II Core wizard, select NiosII/e as the type of processor for the third processor in the
system.

Type cpu3 to rename the third processor added to the system.

Click Move Up several times to move cpu3 under cpu2.

Adding a Timer for cpu2

As mentioned earlier, it is typically not recommended for multiple processors to share non-memory peripherals, so
here you will add separate timer peripherals for each processor in this system.

14 Altera Corporation
May 2006

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

Design Example

To add a timer for cpu2, perform the following steps:

1. Double-click Interval Timer under Others in the list of available components to add a timer for cpu2.
2. Accept the default settings in the Interval Timer wizard and click Finish.

3. Right-click the new timer component and click Rename.

4. Type cpu2_timer and press Enter. This will be your timer for cpu2.

5. Click Move Up to move cpu2_timer under cpu2.

6. Using the connection matrix, connect cpu2_timer to the data master for cpu2 only. Disconnect cpu2_ timer
from all other masters.

If you do not see the connection matrix when you move the mouse over the SOPC Builder connections, click
Show Connections on the View menu.

7. Type 0 in the IRQ column for cpu2_timer. This allows cpu2_timer to interrupt cpu2 with a priority setting
of 0, which is the highest priority.

Adding a Timer for cpu3

To add a timer for cpu3, perform the following steps:

1. Double-click Interval Timer under Others in the list of available components to add a timer for cpu3.
2. Accept the default setting in the Interval Timer wizard and click Finish.

3. Right-click the new timer component and click Rename.

4. Type cpu3_timer and press Enter. This will be your timer for cpu3.

5. Click Move Up to move cpu3_timer under cpu3.

6. Using the connection matrix, connect cpu3_timer to the data master for cpu3 only. Disconnect cpu3_timer
from all other masters.

7. Type 0 in the IRQ column for cpu3_timer. This allows cpu3_timer to interrupt cpu3 with a priority setting
of 0, which is the highest priority.

Adding a Hardware Mutex

You are building a multiprocessor system that shares a data memory between processors, so it is essential that a
hardware mutex component be included to protect that memory from data corruption.

To add the hardware mutex, perform the following steps:
1. Double-click Mutex under Others in the list of available components to add a mutex core to the system.

2. Accept the defaults in the Mutex wizard and click Finish.

Altera Corporation 15
May 2006 Multiprocessor

S.A.Sutha
Highlight

Design Example

Multiprocessor

3. Right-click Mutex and click Rename.
4. Typemessage buffer mutex and press Enter.

5. Using the connection matrix, connect message_buffer_mutex to the data masters for each processor. This
allows all three processors to access message buffer mutex.

Adding a Message Buffer Memory

Here you will add an on-chip memory to the system that will be used as a message buffer to pass messages
between processors. This memory will be shared by all processors in the system. The processors will use the
mutex core added in the previous steps to protect the memory’s contents from corruption.

To add a message buffer memory perform the following steps:

1. Double-click On-chip Memory under Memory in the list of available components. The On-Chip Memory
wizard appears.

2. Under Total Memory Size: type 1 in the box and select Kbytes from the drop-down list.
3. Click Finish.
4. Right-click on-chip memory_0 and click Rename.

5. Typemessage buffer ramand press Enter. This memory will be used as a message buffer for the three
processors in your multiprocessor system.

Connecting Shared Resources

Now you need to connect all the resources that will be shared between processors in the system using SOPC
Builder’s connection matrix.

To connect all the resources in the system shared by the multiple processors, perform the following steps:

1. Using the connection matrix, connect sdram to the instruction and data masters for each processor, allowing
all three processors to access sdram. All the connection dots for the sdram should be solid black.

2. Using the connection matrix, connect ext_ram_bus to the instruction and data masters for each processor,
allowing all three processors to access external RAM and FLASH. All the connection dots for ext_ram_bus
should be solid black.

3. Using the connection matrix, connect message_buffer_ram to the data masters for each processor, allowing
all three processors to access that memory.

4. Remove the default connection between message buffer ram and the cpul instruction master, as no
software will be run from message_buffer_ram.

5. On the System menu, click Auto-Assign Base Addresses to give every peripheral a unique base address.

Figure 9 shows new components to implement the message buffer and the required connectivity for the system.
Because this tutorial runs on several different development boards, the complete component list may not match
yours.

16 Altera Corporation
May 2006

S.A.Sutha
Highlight

S.A.Sutha
Highlight

Design Example

Figure 9: Connect Shared Resource Example

Mociule Matme Description Input Clock Baze Enc! RO | IRG | IRG

- 2 ext_flash_enet_bus |walon Tristate Bridge jolk_8s
] ext_ssram_bus \Aualon Tristete Bricdge lclk_85
1 led_display (Character LCD (16x2, Optrex 16207) clk_85 0x01010CB0 0x01010CEF
ext_ssram (Cypress CY7C1360C SSRAM i 0x02000000] 0x021FFFFF
3] ddr_sdram [DDR SDRAM Cortroller MegaCare Funcion - Atiera Corporation ok &5 FFFFFF
epcs_controller [EPCS Serial Flash Cortraller ek 85 0x01011000) Ox0MO0M7FF [
ext_flash [Flash Mernary (Camrmon Flash Interface) i 0x00000000] Ox0OFFFFFF
E cput_timer Iterval tirer clk A5
st Sk port 0x01010C00[0x01010C1F [0
B cpu?_timer Interval timsr clk_85
st (St port ox01010c00[oxo1otociF| | [0
O epu3_timer Interval timer clk_8s
— st [Slawe port 0x01010C00 0x01010CHF [o
7 high_res_timer Interval timer ol _85 0x01010C60[D10 OCFF|[3
7] jtag_uart WTAG UART clk_85 0x01010C48[00101 0CHF| [T
lan91c111 LANS1c111 Interface (Ethernet) 0x01000000) OxCMOOFFFF[6 [HC [HC
B cput lMios || Pracessor - Altera Corparation ok &5
instruction_naster Master port
[ciata_master Master port RGO IR 31| ¢
Jag_sebug_module [Shave port 0x01010000(Ox010107FF
B epuz INios Il Processor - Aftera Corparation l% jolk_8s
instruction_master Waster port
[data_master IWaster port RGO IR 31| ¢}
fag_debug_module [Slawe port 0x01010000(0x010107FF,
B cpu3 lNios || Processor - Altera Corparation ol &5
—¢ instruction_naster Master port
[>—< data_master Master port IRG Q) IR 31| ¢}
k— tay_dsbuy_rodule Sk port 0x01010000(0x010107FF
button_pio IFIC (Paralle! 1iC2) ek _Bs 0x01010C50(0x01010CSF| [2
 led_pio IFIC (Paralls! 1i07) clk_8s 0x01010CAD| 0x01010CAF
& reconfig_request_pio IFIc (Paralle! i) lclk_Bs 0x01010C00 0xCMD10CDF
] seven_seg_pio IPIC (Parallel i) lolk_85 0x01010CC0| 0:01010CCF
& pit IPLL (Phase-Locked Loop) lchk_in 0x01010C20(OxD1010C3F
{2 sysid [System D Peripheral clk_85 0x01010CE0[0x01010CE7
3 uart! LART (RS-232 serial porl) ol _85 0x01010C80[D10 OCHF| (4
B message_buffer_mutex Mutex e85
st (Sl port 0x01010C40[0xD1010C47)
E message_butfer_ram 1On-Chify Memory (RaM or ROM) ck_8s
- st [Shawe: port 0x01010800 0x0101 OBFF,

Setting Reset and Exception Addresses
In the following steps, you will set the reset and exception addresses for all three processors. If you recall from
Program Memory on page 2 the exception addresses are what determine how code memory is partitioned between

processors. In this tutorial, each of the three processors will run its software from 1Mbyte of SDRAM, so you will
set each processor’s exception address within SDRAM, each separated by 0x100000 (1Mbyte).

Setting Reset and Exception Addresses for cpul

To set the Reset and Exception Addresses for cpul, perform the following step:

v Click the “More “cpul” settings” tab and set the Memory Module and Offset fields to match Table 2.

Table 2: cpu1 Reset & Exception Addresses

Processor Memory Module Offset Address
Function
Reset Address | ext_flash 0x00000000 0x00000000
Exception sdram 0x00000020 0x01000020
Address
Break Location | cpul/jtag_debug_module | 0x00000020 0x01010020

Setting Reset and Exception Addresses for cpu2

To set the Reset and Exception Addresses for cpu2, perform the following step:

v Click the “More “cpu2” settings” tab and set the Memory Module and Offset ficlds to match Table 3.

Altera Corporation 17
May 2006 Multiprocessor

Design Example

Multiprocessor

Table 3: cpu2 Reset & Exception Addresses

Processor Memory Module Offset Address
Function
Reset Address ext_flash 0x00100000 0x00100000
Exception sdram 0x00100020 0x01100020
Address
Break Location | cpu2/jtag_debug_module | 0x00000020 0x01010020

Setting Reset and Exception Addresses for cpu3

To set the Reset and Exception Addresses for cpu3, perform the following step:

v Click the “More “cpu3” settings” tab and set the Memory Module and Offset fields to match Table 4.

Table 4: cpu3 Reset & Exception Addresses

Processor Memory Module Offset Address
Function
Reset Address ext_flash 0x00200000 0x00200000
Exception sdram 0x00200020 0x01200020
Address
Break Location | cpu3/jtag_debug_module | 0x00000020 0x01010020

Generating and Compiling the System

Here you will generate HDL for the system you just constructed in SOPC Builder, and then compile the project in
Quartus to produce a programming file. To generate and compile the system, perform the following steps:

6. Click Generate. This may take a few moments.
7. When generation is complete, click Exit in SOPC Builder. This returns you to the Quartus II software.

8. If not automatically prompted to do so, update the system symbol. To do so, right-click anywhere in the
Quartus symbol editor, click Update Symbol or Block, and then click OK.

Notice that the symbol did not change. SOPC Builder was able to easily connect this complex,
multiprocessor system without making any external changes to the system. With very little effort, a single-
processor system has been turned into a pin-compatible three-processor system.

9. On the File menu, click Save to save the Block Diagram File (.bdf) file.

10. On the Processing menu, click Start Compilation to compile the project in Quartus I1.
11. When compilation is finished, click Programmer on the Tools menu.

12. Turn on the Program/Configure checkbox for the standard.sof FPGA configuration file.

13. Click Start to download the file to your target hardware.

18 Altera Corporation
May 2006

Creating Software for the Multiprocessor System

Creating Software for the Multiprocessor System

In the following steps you will create six separate software projects for the multiprocessor system, one application
project and one system library project for each processor in the system. You will then build, run and debug those
software projects using the Nios II IDE.

The software you will be running on this system uses the hardware mutex to share a message buffer. All three
processors write messages to the message buffer. cpul then reads the messages and prints them to the jtag_uart.
You will notice that the same C file runs on each processor, but the processors are doing slightly different things.
This is achieved by using the cpuid feature of the Nios II processor. In Nios II processor systems, a processor
locks the mutex by writing the value of its cpuid control register to the OWNER field of the mutex register. The
cpuid register holds a static value that uniquely identifies the processor in a multi-processor system. The
software checks the processor’s cpuid before executing any functions that are specific to a particular processor.
If the cpuid is correct, it will execute the function.

Starting the Nios Il IDE

Here you will start the Nios II IDE and begin creating software projects for the three processors in the system. To
start the Nios II IDE from SOPC Builder, perform the following steps:

1. On the Tools menu, click SOPC Builder.
2. In SOPC Builder, click the System Generation tab.
3. Click Run Nios II IDE. The Nios II IDE starts, displaying the Workspace Launcher dialog box.

4. Click OK to accept the default workspace directory.

[(3 Ifthe Nios I IDE welcome screen appears, click Workbench to continue.

Creating a Software Project for cpu1

Here you will create software projects to run on each of the three processors in the system. The software will use
the mutex to place messages in the message buffer to later be retrieved and printed by cpul.

To create a software project for cpul, perform the following steps:

1. On the File menu, point to New, and then click C/C++ Application. The New Project wizard for C/C++
application projects appears, pre-selecting the newly-created SOPC Builder System (.ptf) file for you.

2. Inthe Name field, type hello multi cpul.
3. Under Select Target Hardware, select cpul as the CPU.

4. In Select Project Template list, select Blank Project as shown in Figure 10.

Altera Corporation 19
May 2006 Multiprocessor

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

Creating Software for the Multiprocessor System

Multiprocessor

Figure 10: New Project for cput

."New Project g|

C/C++ Application)
Click Finish o create this project with a default system library 1 c ‘

Marne: |he||0_mu|ti_cpu1

¥ Use Default Location

Select Target Hardware

=t =l W fa YAV oY P B ¢ rrulbiprocessortukorialistandardistd 1s10ES. ptf

CPLU: cpul

Select Project Template

Elank Project ~ Description
Board Diagnostics

Cuskom Instruction Tukorial
Count Binary Details
EE?:F'%?ES Creates an emphy project to which you can add your
Hello Freestanding code,

Hello LED

Hello MicroC fos-11

Hello Warld

Hello World Small

Merory Test

Simple Socket Server v

Elank Project

< Back | Mexk = | Finish I Cancel |

10.

11.

12.

13.

14.

Click Finish. The Nios II IDE will generate a new C/C++ application project, and a corresponding system
library project for cpul.

Download the file hello_world_multi.c to a known location on your host PC.

= This file is found with the Creating Multiprocessor Nios II Systems Tutorial on the Nios II
Processor Literature page at www.altera.com/literature/lit-nio2.jsp.

Using an external file management tool (such as Windows Explorer), drag hello_world_multi.c from its
known location into the C/C++ Projects view of the Nios II IDE, and drop it onto the hello_multi_cpul
project folder.

Right-click the system library project hello_multi_cpul_syslib.

Select Properties.

In the left-hand pane, select System Library.

Verify null is selected for stdin, stderr, and stdout since this processor is not connected to the jtag uart.

Verify that sdram is selected for Program Memory, Read-only data memory, Read/write data memory,
Heap memory, and Stack memory.

Select sdram as Program memory, Read-only data memory, Read/write data memory, Heap memory,
and Stack memory. See Figure 11 for an example of system library property settings.

Click OK.

20 Altera Corporation
May 2006

S.A.Sutha
Highlight

Creating Software for the Multiprocessor System

Figure 11: System Library Property Settings

J Properti

Info
Builders

CIC+H+
CiCH+
CIC+H+
CICH

ies for hello_multi_cpul_syslib
System Library
Buid Target Hardware
Documentation [%SOPC Builder System: |
File Types
Indercr cpL: [
System Library Contents Linker Stript
RTOS: none (single-threaded) - € Custom linker scripk
stdout: jtag_uart hd * Use suto-generated linker script
stderr: Jag_uart =l Pragram memary {text) sdram -
stdin: tag_uart :‘v Read-only data memory (. rodaka): sdram hd
S dleh ez cpul_timer = Read/write data memory (rwdata): |sdram -
Timestamp timer: none - HEpEEIERs E—
Max file descriptors: 32 o p— [
Iv Clean exit (flush buffers) I Reduced device drivers W (5 & =t e ik
I™ 3mall < library I Link with profiling library:
Exception stack memory:
[Modelsim onky, no hardware support | Emulate multiply and divide instructions
[T Maimum exception stack size (bytes):
Software Components...
bep | Restoreefouts | amoty |

Altera Corporation
May 2006

Creating a Software Project for cpu2

To create a software project for cpu2, perform the following steps:

1.

10.

11.

12.

On the File menu, point to New, and then click C/C++ Application. The New Project wizard for C/C++
application projects appears, pre-selecting the newly-created SOPC Builder System (.ptf) file for you.

In the Name field, type hello multi cpu2.
Under Select Target Hardware, select cpu2 as the CPU.
In Select Project Template, choose Blank Project.

Click Finish. The Nios II IDE will generate a new C/C++ application project, and a corresponding system
library project for cpu2.

In the C/C++ Projects view, expand the hello_multi_cpul project folder. Hold down the Ctrl key and click
and drag hello_world_multi.c onto the hello_multi_cpu2 project folder. A copy of hello_world_multi.c
appears under the hello_multi_cpu2 project.

Right-click the system library project hello_multi_cpu2_syslib.

Select Properties.

Select System Library in the left-hand pane.

Select cpu2_timer as System clock timer.

Verify null is selected for stdin, stderr, and stdout since this processor is not connected to the jtag_uart.

Verify that sdram is selected for Program Memory, Read-only data memory, Read/write data memory,
Heap memory, and Stack memory.

21
Multiprocessor

Creating Software for the Multiprocessor System

Multiprocessor

13. Click OK.

Creating a Software Project for cpu3
To create a software project for cpu3, perform the following steps:

1. On the File menu, point to New, and then click C/C++ Application. The New Project wizard for C/C++
application projects appears, pre-selecting the newly-created SOPC Builder System (.ptf) file for you.

2. Inthe Name field, type hello multi cpu3.
3. Under Select Target Hardware, select cpu3 as the CPU.
4. In Select Project Template, choose Blank Project.

5. Click Finish. The Nios II IDE will generate a new C/C++ application project, and a corresponding system
library project for cpu3.

6. Inthe C/C++ Projects view, expand the hello_multi_cpul project folder. Hold down the Ctrl key and click
and drag hello_world_multi.c onto the hello_multi_cpu3 project folder. A copy of hello_world_multi.c
appears under the hello_multi_cpu3 project.

7. Right-click system library project hello_multi_cpu3_syslib.

8. Select Properties.

9. Select System Library in the left-hand pane.

10. Select cpu3_timer as System clock timer.

11. Verify null is selected for stdin, stderr, and stdout since this processor is not connected to the jtag uart.

12. Verify that sdram is selected for Program memory, Read-only data memory, Read/write data memory,
Heap memory, and Stack memory.

13. Click OK.

Building the Software Projects

Here you will build the three software projects you just created so they can be run on the processors in the system.
To build the three software projects, perform the following steps:

1. Inthe C/C++ Projects view, right-click the project hello_multi_cpul and click Build Project.

2. Right-click the project hello_multi_cpu2 and click Build Project.

3. Right-click the project hello_multi_cpu3 and click Build Project.

If you encounter any errors in the builds, you must correct them and rebuild before continuing.

22 Altera Corporation
May 2006

Creating Software for the Multiprocessor System
I EEEEEEEEE——

Setting up the Nios Il IDE for Multiprocessor Debug

By default the Nios II IDE is set to not allow multiple active debug sessions. To enable multiple debug sessions,
perform the following steps:

1. In the Nios II IDE, click Preferences on the Window menu.
2. Select Nios II and turn on Allow multiple active run/debug sessions as shown in Figure 12.

3. Click OK.

Figure 12: Multiple Active Run/Debug Sessions

. Preferences |:|@@

+- Workbench Nios II
Euild Crder
OO+ Set global Mios 1T build and run settings.
+-Help There should rarely be a reason to change these preferences From the defaults,
+- InstalljUpdate ™ show command lines when running ‘make’ {i.e. Don't use *-s' flag on make)
+ ™ Generate objdump file
#- Run/Debug ™ allow multiple active runfdebug sessions
+- Team

I¥ Confirm before starting the flash programmer

I¥ warn about launches in Run mode For CfC++ Application projects using Host-based File System

Restore Defaults | Apply |

Impart... Expart. .. Cancel

Creating a Debug Configuration for Each Processor

Here, you will create a run/debug configuration for each of the target processors, which enable the running and
debugging of the three software projects you just built on the processors in the system.

To create debug configurations for each processor, perform the following steps:
1. Inthe C/C++ Projects view, click the hello_multi_cpul project.

2. On the Run menu, click Run.

3. Select Nios II Hardware in the Configurations list.

4. Click New in the lower-left corner of the Run dialog box. A new run/debug configuration is created for the
project.

5. Click the Target Connection tab.
6. Ensure the download cable you are using is selected in the JTAG cable field as shown in Figure 13.

If the field reads Automatic<currently (your correct download cable)>, this is fine. You do not need to
change it.

Altera Corporation 23
May 2006 Multiprocessor

S.A.Sutha
Highlight

S.A.Sutha
Highlight

S.A.Sutha
Highlight

Creating Software for the Multiprocessor System

Figure 13: Create Debug Configuration
)

Create, manage, and run configurations _
Configurations: tuarae: | hella_multi_cpu3 Nios T1HW configuration
=1 P Nlios T1 Hardware:
P hello_multi_cpu1 Nios IT HW con
" hello_multi_¢ =
P& hello_rult_rpuz Nos 11 Hw can =) Main Al Terget Connection Hs Debugger | & source | £ common
1 hello_mul W/ con Help
el s b/ con)
() Nios I Instruction Set Simulator ITAG cable:
hios 11 ModelSim Juse-Blaster [U8-0] | Refresh
P nios 11 Multipracessor Collection
ITAG device:
Jautomatic <the device which has the processor> =| Refresh
Nios T1 Terminal communication device:
|nene <da not launeh Nios 11 Terminal> -
Host COM part:
< >
Mew Delete

7. Click Close.

8. Repeat steps 1 — 7 to create a run/debug configuration for each of the target processors.

A Be sure you have selected the appropriate project when you create the run/debug configuration.
At this point, you have created a run/debug configuration for each processor in the system. You can now

download, execute, and debug code on each of the processors individually, using the normal flow for
running/debugging.

Creating a Multiprocessor Collection

Here you will create a multiprocessor collection which enables the launching and stopping of multiple processors
as a single unit

To create this multiprocessor collection, perform the following steps:

1. On the Run menu, click Run.

2. Inthe Configurations list, select Nios II Multiprocessor Collection.

3. Click New in the lower-left corner of the Run dialog box.

4. Inthe Name field, type hello cpu collection as the name for this new multiprocessor collection.

5. Turn on hello_multi_cpul Nios Il HW configuration, hello_multi_cpu2 Nios II HW configuration, and
hello_multi_cpu3 Nios I HW configuration as shown in Figure 14.

6. Click Apply.

24 Altera Corporation
Multiprocessor May 2006

Creating Software for the Multiprocessor System

Figure 14: Multiprocessor Collection Example

. Run Pg

Create, manage, and run configurations

I W

Configurations: Name: | Mew Mios II Mulkipracessar Callection configuration
= Fﬁ;\ Mios IT Hardware
m hella_multi_cpui Mios IT HW configuration - =
ﬁ hell Main l
"= hello_multi_cpu2 Mios 1T HW configur ation
m hello_mulki_cpu3 Mios IT HW canfiguration Help
Mios IT Instruction Set Sirmulator
(B8 Mics 11 ModelSim Select Mios IT Hardware configurations ko run concurrently:

= m Mios IT Mulkiprocessor Collection

F,—;“hel\u_multi_cpul Mios IT Hw configuration
Ffmhel\o_multi_chZ Nios IT HW canfiguration
mhel\n_multl_chS Mios IT H configuration

Starting the Multiprocessor Collection

Now you can start all the processors with a single mouse click. To start all the processors, perform the following
steps:

1. Select the hello_cpu_collection configuration, and click Run. The Nios II IDE downloads the software to
each processor, and then runs the software.

Each processor begins executing code as soon as its code is downloaded; the processors do not start in unison.

2. After the launch finishes, you should see messages from all three processors being displayed in the Console
view as shown in Figure 15.

Figure 15: Multiprocessor Collection Messages

B -2 0 x
niosZ-terminal: starting in terminal mode (Control-C exits) i
FIE3ST LOCK - Message from CPU 1. HNumber sent: 1
Messags from CPU 1. MNunkber sent: 2
Messagé from CPU 1. MNunber sent: 3
Message from CPU 1. MNunber sent: 4
Message from CFU 2. HNuwber sent: 1
Message from CPU 1. Nunber sent: 5
Message frowm CPU 2. MNurber sent: 2
Message from CPU 1. Nunber sent: &
Message from CPFU 2. Nunber sent: 3
Message from CPU 1. Nunber sent: 7
Message frowm CPU 2. Nunber sent: 4
Message from CPU 1. Nunber sent: 8
Message from CFU 3. Nuwber sent: 1
Message from CPU 2. Nunber sent: 5
Message from CPU 1. MNunber sent: 9
Message frowm CPU 3. MNurber sent: 2
Message from CFU 2. Nunber sent: 6
Mesaara frowm BT 1 Mawker eants 10 b
Tasks | C-Buid | Properties | Consale

Altera Corporation
May 2006

3. When you are done observing the Console output, click Terminate (the square red button on the Console
view toolbar) to close the terminal connection.

25
Multiprocessor

Creating Software for the Multiprocessor System

Debugging the Software Projects on the Board

Here you will start all the processors using the multiprocessor collection, and set breakpoints on individual
processors. To start the processors and set individual breakpoints, perform the following steps:

1. On the Run menu, click Debug.

2. Inthe Configurations list, select the new collection you created under Nios II Multiprocessor Collection in

the previous section.

3. Click Debug.

= If a dialog box appears and asks you to switch to the Debug perspective, click Yes.

Again, the Nios II IDE will download and launch each software project on its respective processor, then

pause each one at a breakpoint set on main ().

In the Debug view, you will see the processor collection listed at the top with each individual debug session

listed below it, including the call stack.

4. Click the main call stack entry under the cpul debug session.

5. Click Step Over in the toolbar menu to see cpul step through its software commands.

6. Click Resume in the toolbar menu to let cpul run freely.

You will see that only messages from cpul appear on the terminal as shown in Figure 16.

Figure 16: cpu1 Debug Messages

B Consale [Mios I Terminal Windaw (12/17/04 2:51 PM)] [| & -8 4 x

nios-s-terminal:

FIRST LOCE -

Mes=age
Mes=age
Mes=age
Mes=age

4

from
from
from
from

Mes=zage from CPU 1.

CPI 1.
CPI 1.
CPI 1.
CPI 1.

HNurilier
HNurilier
HNurilier
HNurilier

Zent:
Zent:
Zent:
Zent:

starting 1n terminal mode [Control-C X1 o

Nuwlber sent: 1

2

)
4
5

7. Click the main call stack entry under the cpu2 debug session.

8. Click Resume in the toolbar menu to let cpu2 run uninterrupted.

You will now see that messages from both cpul and epu2 appear on the terminal as shown in Figure 17.

Multiprocessor

26

Altera Corporation
May 2006

Creating Software for the Multiprocessor System

Figure 17: cpu1& cpu2 Debug Output

Altera Corporation
May 2006

B Console [Mios 1T Terminal Window (12/17/04 2:55 PM)] & -8 4
HMessage from CPFO 1. HNumber sent: 4

Message from CPU 2. IMNwrber sent: 1

Message from CPU 1. IMNwmber sent: 5

Message from CPU 2. Number sent: 2

Message from CPU 1. Nuwber sent: o

Meszage from CPU 2. Nuwber sent: 3

Message from CPU 1. Nuwber sent: 7

4

Console | Tasks

9. In the Debug view, click the multiprocessor collection at the top of the list.

10. Click Terminate (the square red button) to stop the debug sessions for all three processors.

You’re done! You’ve now constructed, built software projects for, and debugged software on your first Nios II
multiprocessor system. You have also learned how to use the Mutex component to share system resources
between processors. Feel free to experiment with the system you’ve created and find interesting new ways of

using multiple processors in an Altera FPGA.

We recommend you save this system to use as a starting point next time you wish to create a multiprocessor

system.

27

Multiprocessor

	Introduction
	Benefits of Multiprocessor Systems
	Nios II Multiprocessor Systems
	Hardware Design Considerations
	Autonomous Multiprocessors
	Multiprocessors that Share Resources

	Sharing Resources in a Multiprocessor System
	Sharing Memory
	The Hardware Mutex Core
	Nios II Systems without a Mutex Core
	Sharing Peripherals between Multiple Processors

	Multiprocessors & Overlapping Address Space

	Software Design Considerations
	Program Memory
	Boot Addresses
	Running & Debugging Multiprocessor Systems from the Nios II IDE

	Design Example
	Hardware and Software Requirements
	Creating the Hardware System
	Getting Started with a Standard Example Design
	Adding a Second Processor
	Adding a Third Processor
	Adding a Timer for cpu2
	Adding a Timer for cpu3
	Adding a Hardware Mutex
	Adding a Message Buffer Memory
	Connecting Shared Resources
	Setting Reset and Exception Addresses
	Setting Reset and Exception Addresses for cpu1
	Setting Reset and Exception Addresses for cpu2
	Setting Reset and Exception Addresses for cpu3

	Generating and Compiling the System

	Creating Software for the Multiprocessor System
	Starting the Nios II IDE
	Creating a Software Project for cpu1
	Creating a Software Project for cpu2
	Creating a Software Project for cpu3
	Building the Software Projects
	Setting up the Nios II IDE for Multiprocessor Debug
	Creating a Debug Configuration for Each Processor
	Creating a Multiprocessor Collection
	Starting the Multiprocessor Collection
	Debugging the Software Projects on the Board

