
PLX PCI9054 Local Bus Master/Target Interface Design

D. W. Hawkins (dwh@ovro.caltech.edu)
Revision: 1.13

June 27, 2010

Contents

1 Introduction 3

2 Local bus interfacing 4
2.1 Master/Target transactions . 4
2.2 Interface signals (J-mode) . 5
2.3 Bus arbitration . 5
2.4 Timing parameters . 7
2.5 PCI9054 configuration . 8
2.6 PCI9054 Master/FPGA Target transactions . 9
2.7 PCI9054 Target/FPGA Master transactions . 9

3 Interface Simulation 13

4 Interface Examples 14
4.1 PCI9054 configuration . 15
4.2 Target-only single-transaction register interface . 18
4.3 Target-only single-transaction RAM interface . 21
4.4 Target-only single/burst transaction RAM interface 33
4.5 Target-only single/burst transaction RAM interface with master wait-state support . 46
4.6 Master/Target interface . 54

5 Software interfacing 55

2

PLX PCI9054 Master/Target Interface June 27, 2010

PLX PCI9054
PCI Master/Target

FPGA

Local B
us Interface

P
C

I B
us Interface

P
LX

-to-F
P

G
A

 B
ridge

uP
-to-F

P
G

A
 B

ridge

Memory/
Devices

Registers

uP
 B

us Interface

Microprocessor (uP)

(Internal or External
to the FPGA)

Host CPU

P
C

I B
us Interface

Main Memory

CPU

Figure 1: PLX PCI9054 PCI I/O Accelerator example application.

1 Introduction

The PLX Technologies PCI9054 PCI I/O Accelerator [3] is a 32-bit, 33MHz, PCI bus master/target
interface. The PCI9054 translates the relatively complex PCI bus protocol into a simpler local bus
protocol. The PCI9054 contains a DMA controller that supports sustained burst transactions over
the PCI bus, and FIFO logic that allows the local bus to operate at a different frequency than the
PCI bus (local bus clock frequencies up to 50MHz).

Figure 1 shows a block diagram of an example application of the PCI9054. The PCI9054 provides
a PCI interface and DMA controller to an FPGA interfaced to the PCI9054 local bus. The use of
the PCI9054 eliminates the need for the PCI interface and DMA logic in the FPGA. This reduces
the resource and (potentially) the timing requirements of the FPGA. The FPGA can optionally im-
plement a processor, or interface to an external processor. The PCI9054 provides PCI bus mastering
capabilities to this processor, and provides a DMA engine for offloading data transfer tasks.

This document provides details on interfacing an FPGA to the PCI9054 local bus. VHDL code
is provided for;

• Local bus master bus functional model (BFM);

– To generate local bus transactions.

• FPGA local bus targets

– Provide a host CPU or the PCI9054 DMA controller access to FPGA registers or RAM.

• FPGA local bus master/target interface (FPGA bridge)

– Provide a host CPU or the PCI9054 DMA controller access to FPGA registers or RAM.

– Provide an FPGA master access to the PCI9054 registers or the PCI bus.

3

PLX PCI9054 Master/Target Interface June 27, 2010

Table 1: PLX PCI9054 Master/Target transactions.

PCI Bus Local Bus
Host FPGA

Transaction CPU PCI9054 PCI9054 bridge

Host CPU access to PCI9054 registers Master Target

Host CPU access to FPGA registers Master Target Master Target

PCI9054 DMA Target Master Master Target

FPGA PCI access Target Master Target Master

FPGA access to PCI9054 registers Target Master

2 Local bus interfacing

2.1 Master/Target transactions

The PCI bus defines two board types; a system or host board (the source of PCI bus clocks and
arbitration) and peripheral boards. PCI bus transactions are started by an initiator or master and are
directed to a slave or target. Host CPU boards incorporate bus master/target interfaces, whereas
peripheral boards may support either target-only, or master/target interfaces. A board design
containing a PCI9054 can support PCI bus master/target operation, with a maximum transfer rate
over a 32-bit, 33MHz, PCI bus of 4 bytes× 33× 106/220 = 125.9MB/s.

Figure 1 shows a block diagram of a system containing a board with a PCI9054 interfaced to
an FPGA. Table 1 shows the master/target transactions possible on the PCI and local buses. The
PCI9054 provides master/target capability on the PCI bus, however, master/target support on the
local bus is optional. If the FPGA does not contain a local processor, or has no need to access the
PCI9054 registers or the PCI bus, then local bus mastering is not required, hence a local bus target-
only interface can be used. Regardless of whether the FPGA local bus interface is a master/target
or target-only interface, high-performance PCI bus master transactions are supported via the use of
the PCI9054 DMA controller.

An example application of the local bus master/target capabilities are;

• The PCI9054 DMA controller is used to transfer data between the host CPU main memory
and on-board memory.

• The FPGA implements a burst capable target interface to support high-performance DMA
transactions.

• (Optional) The FPGA implements a master interface to provide access to the PCI9054 internal
registers, or access to the PCI bus.

If the FPGA master interface is only used to access to the PCI9054 registers, then the bus
master logic can be simplified by only implementing single transaction support.

4

PLX PCI9054 Master/Target Interface June 27, 2010

2.2 Interface signals (J-mode)

The PCI9054 local bus supports three interface modes; M, J, and C. The modes are provided to
support direct-connection to local processor buses. For an FPGA application, the J-mode, with
multiplexed address/data bus, results in the lowest number of interface signals. Table 2 shows the
signals required by an FPGA interface to the PCI9054 local bus. The J-mode of the PCI9054 is
selected by using a mode select pin setting of MSEL[1:0] = 01b (p1-13 [3]). In J-mode, the ALE pin
is not required for use by the FPGA interface, however, the pin requires a pull-down for the device
to function correctly (see the note on p12-1 [3]). The PCI9054 pin functions for J-Mode are detailed
in Section 12 of the data book [3].

2.3 Bus arbitration

The PCI9054 defaults to being a target on the local bus. In J-mode, the PCI9054 local bus master
interface arbitrates for the local bus by asserting the hold request signal, LHOLD, and waiting for
assertion of the hold acknowledge signal, LHOLDA (p4-2 and p5-44 [3]). If the FPGA implements a
target-only interface, the PCI9054 is the only local bus master, so the arbiter can be implemented
via a pull-up on HOLDA, or by having the FPGA register the HOLD input to generate the HOLDA output
(to match the signal timing on p5-44 [3]). If the FPGA implements a master/target interface, then
the FPGA master must also arbitrate for the local bus, so a two device arbiter is required internal
to the FPGA.

If the PCI9054 local bus master interface is used to configure the FPGA, a pull-up is required
on the HOLDA signal, so that local bus accesses succeed when the FPGA is not configured. Once the
FPGA is configured, arbiter logic internal to the FPGA can control HOLDA.

5

PLX PCI9054 Master/Target Interface June 27, 2010

Table 2: FPGA interface to the PLX PCI9054 local bus.

FPGA PCI9054 FPGA direction
name name Master Target Description
Bus arbitration

plx hold LHOLD I I Bus hold (request)
plx holda LHOLDA O O Bus hold acknowledge
plx breqo BREQo I I PCI9054 requires the local bus
plx breqi BREQi O O Local bus master bus requires the bus

Data transfer

plx clk LCLK I I Local bus clock
plx ccsN LCCS# O O Configuration register select
plx adsN LADS# O I Address strobe
plx wr rdN W/R# O I Write/read
plx lastN BLAST# O I Last data phase
plx waitN LWAIT# O I Master wait-state
plx rdyN LREADY# I O Target wait-state
plx termN BTERM# I O Target burst terminate request
plx dp[3:0] DP O I Parity
plx beN[3:0] LBE# O I Byte-enables
plx ad[31:0] LAD I/O I/O Multiplexed address/data bus

Interrupts

plx intN LINT# I/O I/O Interrupt request
plx serrN SERR# I/O I/O System error

User/DMA (multifunction signals)

plx deN DMAPAF I I PCI initiator write FIFO almost full
EOT# O O Terminate the current DMA transfer

plx udloN USERo I I User output
DREQ# O O Demand-mode DMA request
LLOCKo# I I Local bus lock output

plx udliN USERi O O User input
DACK# I I Demand-mode DMA acknowledge
LLOCKi# O O Local bus lock input

6

PLX PCI9054 Master/Target Interface June 27, 2010

Table 3: PLX PCI9054 local bus timing parameters (J-mode).

PCI9054 PCI9054 direction Timing for
name Master Target Input (ns) Output (ns)

tsu th tco(min) tco(max)

Bus arbitration

LHOLD O O 5.0 10.0
LHOLDA I I 7.0 1.0
BREQo O O 5.0 8.5
BREQi I I 5.0 1.0

Data transfer

LCCS# I 1.5 1.0
LADS# O I 5.0 1.0 5.0 10.0
W/R# O I 8.5 1.0 5.0 12.0
BLAST# O I 6.5 1.0 5.0 12.5
LWAIT# O I 7.0 1.0 5.0 10.5
LREADY# I O 9.5 1.0 5.0 9.5
BTERM# I O 9.5 1.0 5.0 10.0
DP O I 3.0 1.0 5.0 10.0
LBE# O I 9.0 1.0 5.0 10.0
LAD I/O I/O 6.5 1.0 5.0 11.0

User/DMA (multifunction signals)

DMAPAF O O 5.0 13.0
EOT# I I 8.5 1.0
USERo O O 5.0 9.5
DREQ# I I 7.0 1.0
LLOCKo# O O 5.0 9.5
USERi I I 7.0 1.0
DACK# O O 5.0 10.5
LLOCKi# I I 7.0 1.0

2.4 Timing parameters

Table 3 contains the local bus timing parameters in J-mode. These timing parameters are used to
constrain FPGA timing during place-and-route.

7

PLX PCI9054 Master/Target Interface June 27, 2010

2.5 PCI9054 configuration

The local bus transaction signal operation depends on the following PCI9054 configuration register
settings (in addition to the device being configured in J-mode);

• LREADY#

– This signal is the target wait-state control.

– For PCI9054 Master/FPGA Target transfers the signal is deasserted by the FPGA to
insert wait-states.

– For FPGA Master/PCI9054 Target transfers the signal is deasserted by the PCI9054 to
insert wait-states.

– For PCI9054 master transactions, the signal must be enabled as a PCI9054 input via
the registers LBRD0[22,6], LBRD1[6], DMAMODE0[6], and DMAMODE1[6] (p11-24, p11-28,
p11-34, p11-36 [3]).

• LWAIT#

– This signal is the master wait-state control.

– For PCI9054 Master/FPGA Target transfers the signal is asserted by the PCI9054 to
insert wait-states.

– For FPGA Master/PCI9054 Target transfers the signal is asserted by the FPGA to insert
wait-states.

– For PCI9054 master transactions, the signal remaines deasserted unless wait-states are
programmed via the registers LBRD0[21:18,5:2], LBRD1[5:2], DMAMODE0[5:2], and
DMAMODE1[5:2] (p11-24, p11-28, p11-34, p11-36 [3]). The wait-states are a fixed number
of clock cycles (1 to 15), and are inserted between the address and first data phase, and
between data phases.

• BTERM#

– Target devices can assert this signal to request the generation of another address cycle.
This feature can be used by burst-capable target devices to trigger a new address cycle
when a burst traverses over a decode region (bursting from one device region to another),
or by non-burst-capable devices to break a burst into single transactions.

– For PCI9054 master transactions, the signal must be enabled as a PCI9054 input via
the registers LBRD0[23,7], LBRD1[7], DMAMODE0[7], and DMAMODE1[7] (p11-24, p11-28,
p11-34, p11-36 [3]).

• Continuous burst mode

– For PCI9054 master transactions, continuous bursting (see Section 4.2.5 p4-3 [3]) is
enabled by enabling the BTERM# input and via the registers LBRD0[26,24], LBRD1[8],
DMAMODE0[8], and DMAMODE1[8] (p11-24, p11-28, p11-34, p11-36 [3]).

Section 4 provides the register settings used during hardware testing of the example designs.

8

PLX PCI9054 Master/Target Interface June 27, 2010

2.6 PCI9054 Master/FPGA Target transactions

This section contains local bus timing diagrams for the PCI9054 operating as the local bus master
and the FPGA as the local bus target;

• Figure 2 shows read/write single/burst transactions.

• Figure 3 shows read/write single/burst transactions with master wait-states
(plx_waitN assertion).

• Figure 4 shows read/write burst transactions with target termination
(plx_termN assertion).

Notes on the transaction sequences are;

• The PCI9054 acquires the local bus (asserts plx_hold and receives plx_holda) before driving
any bus signals. The PCI9054 tristates all signals before releasing the bus.

• The PCI9054 starts a transaction by generating an address strobe (plx_adsN driven low for
one clock), asserting the write/read indicator (plx_wr_rdN), and driving the transaction byte-
enables (plx_beN[3:0]) and address (plx_ad[31:0]).

• If the transaction is a write, the first write-data phase is driven onto the bus on the clock after
the address strobe.

• Data transfers occur in data phases where plx_waitN is deasserted and plx_rdyN is asserted.
The final data phase (transaction end) occurs when both plx_lastN and plx_rdyN are asserted
(plx_waitN never asserts when plx_lastN asserts).

• If the transaction is a single read/write, and there are no wait-states programmed, the last
indicator (plx_lastN) is asserted from the clock after the address strobe until the end of the
transaction.

If the transaction is a burst read/write, the last indicator is driven during the last data phase
(which can last for multiple clocks, if plx_rdyN is not asserted when plx_lastN is first as-
serted).

• There is a minimum of one clock turn-around between back-to-back transfers by the PCI9054
(Section 4.2.6 p5-4 [3]).

2.7 PCI9054 Target/FPGA Master transactions

An FPGA local bus master interface provides access to the PCI9054 internal configuration registers
and access to the PCI bus. Because the PCI9054 contains a DMA controller that can be used to
provide high-performance transfers over the PCI bus, burst-capability is not really required for the
FPGA local bus master interface. Providing a local bus master with read/write single transactions
support is sufficient for most applications.

The FPGA local bus master transactions are virtually identical to the PCI9054 local bus master
transactions, with the exceptions;

• The FPGA bus master arbitration signals are internal to the FPGA.

• Accesses to the PCI9054 internal registers are initiated with the assertion of both plx_ccsN
and plx_adsN (p5-36 [3])

• Accesses to the PCI bus are initiated with the assertion of only plx_adsN.

9

PLX PCI9054 Master/Target Interface June 27, 2010

plx_hold

plx_holda

plx_adsN

plx_wr_rdN

plx_lastN

plx_waitN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0 A0 D0 D1 D2 D3
R
E
A
D

R
E
A
D

R
E
A
D

R
E
A
D

R
E
A
D

plx_hold

plx_holda

plx_adsN

plx_wr_rdN

plx_lastN

plx_waitN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0 A0 D0 D1 D2 D3

W
R
IT
E

W
R
IT
E

W
R
IT
E

W
R
IT
E

W
R
IT
E

plx_termN

plx_termN

(a) (b)

(c) (d)

Figure 2: PLX PCI9054 local bus target timing; (a) read-single, (b) read-burst, (c) write-single, and
(d) write-burst.

10

PLX PCI9054 Master/Target Interface June 27, 2010

plx_hold

plx_holda

plx_adsN

plx_wr_rdN

plx_lastN

plx_waitN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0 A0 D0 D1 D2 D3

R
E
A
D

R
E
A
D

R
E
A
D

R
E
A
D

R
E
A
D

plx_hold

plx_holda

plx_adsN

plx_wr_rdN

plx_lastN

plx_waitN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0 A0 D0 D1 D2 D3

W
R
IT
E

W
R
IT
E

W
R
IT
E

W
R
IT
E

W
R
IT
E

plx_termN

plx_termN

(a) (b)

(c) (d)

Figure 3: PLX PCI9054 local bus target timing with two wait-states; (a) read-single, (b) read-burst,
(c) write-single, and (d) write-burst.

11

PLX PCI9054 Master/Target Interface June 27, 2010

plx_hold

plx_holda

plx_adsN

plx_wr_rdN

plx_lastN

plx_waitN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0 D1 D2 D3

R
E
A
D

R
E
A
D

R
E
A
D

R
E
A
D

plx_hold

plx_holda

plx_adsN

plx_wr_rdN

plx_lastN

plx_waitN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0 D1 D2 D3

W
R
IT
E

W
R
IT
E

W
R
IT
E

W
R
IT
E

plx_termN

plx_termN

D4 D5 D6 D7

R
E
A
D

R
E
A
D

R
E
A
D

R
E
A
D

A4

D5 D6 D7A4 D4

W
R
IT
E

W
R
IT
E

W
R
IT
E

W
R
IT
E

(a)

(b)

Figure 4: PLX PCI9054 local bus target burst terminate timing; (a) read-burst, and (b) write-burst.

12

PLX PCI9054 Master/Target Interface June 27, 2010

Testcase Generator
plx_target_model_tc.vhd

Target Model
plx_target_model.vhd

BFM
plx_bfm.vhd

Bus Monitor
plx_monitor.vhd

BFM
Protocol

PLX
Bus

Model
Protocol

plx_target_model_tb.vhd

Testcase Generator
plx_target_ram_tc.vhd

Target Device
plx_target_ram_burst.vhd

BFM
plx_bfm.vhd

Bus Monitor
plx_monitor.vhd

BFM
Protocol

PLX
Bus

plx_target_ram_burst_tb.vhd

(a) (b)

Figure 5: PLX PCI9054 local bus simulation; (a) simulation components testbench, and
(b) synthesizeable component testbench.

3 Interface Simulation

A critical part of the bus interface design process, is to ensure that components meet the require-
ments of the bus protocol. Figure 5 shows a block diagram of how the PLX bus components
developed in this document were tested. The PLX bus functional model (BFM) is a component
that generates PLX PCI9054 local bus transactions, i.e., the bus signal waveforms that correspond
to read-single, read-burst, write-single, and write-burst transactions, transactions with wait-states,
and burst-terminated transactions. The PLX bus monitor observes the signals on the PLX bus and
ensures that each transaction adheres to the PLX bus protocol; any violation results in simulation
termination. A user-defined testcase generator consists of transaction sequences, i.e., reads and
writes. The testcase generator communicates with the BFM using a procedural interface, eg. reads
and writes are initiated with functions like read_single(), and write_burst().

Figure 5(a) shows the testbench for the simulation components. A PLX target model was
developed to test the BFM and bus monitor. The testcase generator communicates with the target
model using a procedural interface, much the same as used to communicate with the BFM. The
testcase first communicates to the model the transaction (or sequence of transactions) about to be
initiated on the PLX bus. The transactions are then initiated with the BFM. The target model
then uses the previously communicated transaction information to check the transaction. For reads,
the model is passed the read data, which it returns to the testcase generator via the read on the
PLX bus, and the testcase generator checks the read data matches what was expected. For writes,
the model checks the write data obtained from the PLX bus against what was expected. Burst
transactions are compared against their expected lengths. The BFM can insert master wait-states
(which are fixed values, eg. two wait-states between each transaction), whereas the target model
can insert an arbitrary number of wait-states, eg. deassertions of plx_rdyN between data phases.
The target model communications protocol provides a mechanism for passing an array of wait-state
data-phase pairs. The first wait-state entry is the address-to-first data phase latency, followed by the
number of valid data phases to allow before inserting target wait-states. The target model testbench

13

PLX PCI9054 Master/Target Interface June 27, 2010

Figure 6: COBRA Correlator Board; PLX PCI9054 PCI interface, Altera FLEX10KE system control
FPGA, Texas Instruments TMS320C30 DSP, and 10 FLEX10KE data processing FPGAs.

testcase generator uses a random number generator to test various master and target wait-state
combinations, thus ensuring the correctness of the simulation components.

Figure 5(b) shows the testbench for the synthesizeable burst-transaction RAM component (which
is described in the next section). Since this component has fixed properties, there is no target model
communications path shown (though the testbench for a synthesizeable component with external
I/O could have such a path). The testbench for the RAM generates read and write, single and burst
transactions. All components designed in the next section are verified using a testbench based on
the test components shown in Figure 5.

4 Interface Examples

Figure 6 shows a compact PCI (cPCI) board design that incorporates the PLX PCI9054 PCI to
local bus bridge1. The interface examples in this section implement PCI9054 local bus target and
local bus master/target interfaces of increasing complexity, with timing analysis based on the use
of the COBRA board FLEX10KE system controller FPGA. The COBRA board local bus operates
at 33MHz (30ns clock period), however, the FPGA timing constraints are set to achieve 50MHz
operation.

Altera FLEX10KE place-and-route (P&R) and post-P&R simulation2 requires the use of Quartus
II 9.0SP2 and Modelsim-Altera Edition 6.4a (download from the Quartus archive). Support for the
FLEX10KE FPGAs is not available in newer versions of the tools. The VHDL developed in this
document can be simulated in newer versions of ModelSim, and can target newer devices, eg. Stratix
or Cyclone series devices.

1The PCI9054 was used in the board design, rather than using a PCI core in the Altera FLEX10KE system
controller FPGA, as the FPGA I/O were not PCI compliant and the PCI9054 was cheaper than the FPGA resources
required to implement a PCI bridge

2Building output netlists, .vho, and using SDF timing netlists .sdo files

14

https://www.altera.com/support/software/download/altera_design/quartus_archive/dnl-quartus_archive.jsp

PLX PCI9054 Master/Target Interface June 27, 2010

lspci -s 01:0d.0 -v

01:0d.0 Bridge: PLX Technology, Inc. PCI9054 32-bit 33MHz PCI <-> IOBus Bridge (rev 0a)

Subsystem: PLX Technology, Inc. PCI9054 32-bit 33MHz PCI <-> IOBus Bridge

Flags: bus master, medium devsel, latency 64, IRQ 169

Memory at febff800 (32-bit, non-prefetchable) [size=256]

I/O ports at e800 [size=256]

Memory at fea00000 (32-bit, non-prefetchable) [size=1M]

Memory at fe900000 (32-bit, non-prefetchable) [size=1M]

Expansion ROM at febe0000 [disabled] [size=64K]

Capabilities: [40] Power Management version 1

Capabilities: [48] #06 [0080]

Capabilities: [4c] Vital Product Data

Figure 7: PLX PCI9054 PCI configuration after power-up with a blank configuration EEPROM.

4.1 PCI9054 configuration

The operation of the PLX PCI9054 is dependent on its configuration register settings, which can
be loaded from an EEPROM at power-on. To ensure that the results of this document can be
reproduced on other hardware incorporating a PCI9054, the COBRA board PCI9054 configuration
EEPROM was erased, so that the board powers-on with default register settings as given in Chapter
11 of the device data book [3].

Figure 7 shows the PCI configuration space settings (as reported by the Linux tool lspci). The
nominal PCI configuration space is four base address regions (BARs) and an expansion ROM region,
i.e.,

• BAR0: 256-bytes 32-bit non-prefetchable memory (PCI9054 registers)

• BAR1: 256-bytes I/O ports (PCI9054 registers)

• BAR2: 1MB 32-bit non-prefetchable memory (local address space 0)

• BAR3: 1MB 32-bit non-prefetchable memory (local address space 1)

• Expansion ROM 64kB

The 256-bytes of PCI9054 configuration registers are accessible as memory or I/O ports via the first
two BARs. Figure 8(a) shows the power-on defaults for these registers (read from BAR0).

The hardware tests in this document use the 1MB BAR3 region which is referred to in the
PCI9054 data book as Local Address Space 0 (LAS0). The configuration of LAS0 is controlled by
the registers highlighted in blue in Figure 8(c);

• LAS0RR = FFF00000 configures the device as a 1MB non-prefetchable memory region.

• LAS0BA = 00000000 disables access to the region. The region must be enabled after power-on
by writing 1 to this register (see Section 5).

• LBRD0 = 40430043h; configures LAS0 as 32-bits, with the ready (plx_rdyN) input enabled, the
termination (plx_termN) input disabled, bursting disabled, and zero wait-states (so plx_waitN
will not assert).

Figure 9 shows the configuration EEPROM settings used on a COBRA board, while Figure 8(b)
shows the BAR0 power-on register values after configuring from the EEPROM. Comparison of the
register values in Figures 8(a) and 8(b) shows how the EEPROM changes the power-on values.

15

PLX PCI9054 Master/Target Interface June 27, 2010

00: FFF00000 00000000 00200000 00300500

10: FFFF0000 00000000 40430043 00000000

20: 00000000 00000000 00000000 00000000

30: 00000000 00000008 00000000 00000000

40: 00000000 00000000 00000000 00000000

50: 00000000 00000000 00000000 00000000

60: 00000000 00000000 0F010180 080F767E

70: 905410B5 0000000A 00000000 00000000

80: 00000043 00000000 00000000 00000000

90: 00000000 00000043 00000000 00000000

A0: 00000000 00000000 00001010 00200000

B0: 00000000 00000000 00000000 00000000

C0: 00000002 00000000 00000000 00000000

D0: 00000000 00000000 00000000 00000000

E0: 00000000 00000000 00000050 00000000

F0: FFF00000 00000000 00000043 00000000

(a)

00: FF800008 00000001 10200000 00300600

10: 00000000 00000000 4B4300C3 00000000

20: 00000000 00000000 00000000 00000000

30: 00000000 00000008 00000000 00000000

40: 00000000 00000000 00000000 00000000

50: 00000000 00000000 00000000 00000000

60: 00000000 00000000 0F010100 180F767E

70: 905410B5 0000000A 00000000 00000000

80: 00000043 00000000 00000000 00000000

90: 00000000 00000043 00000000 00000000

A0: 00000000 00000000 00001010 10200000

B0: 00000000 00000000 00000000 00000000

C0: 00000002 00000000 00000000 00000000

D0: 00000000 00000000 00000000 00000000

E0: 00000000 00000000 00000050 00000000

F0: 00000000 00000000 00000000 00000000

(b)

EROMRR EROMBA LBRD0 DMRR

MBOX0 MBOX1 MBOX2 MBOX3

DMLBAM DMLBAI DMPBAM DMCFGA
OPQIS OPQIM

MBOX4 MBOX5 MBOX6 MBOX7
P2LDBELL L2PDBELL INTCSR CNTRL
PCIHIDR PCIHREV LAS0RR LAS0RR

LAS0RR LAS0BA MARBR PROT_AREA

DMAMODE0 DMAPADR0 DMALADR0 DMASIZ0
DMADPR0 DMAMODE1 DMAPADR1 DMALADR1
DMASIZ1 DMADPR1 DMACSR DMAARB
DMATHR DMADAC0 DMADAC1
MQCR QBAR IFHPR IFTPR
IPHPR IPTPR OFHPR OFTPR
OPHPR OPTPR QSR
LAS1RR LAS1BA LBRD1 DMDAC

00:
10:
20:
30:
40:
50:
60:
70:
80:
90:
A0:
B0:
C0:
D0:
E0:
F0:

(c)

Figure 8: PLX PCI9054 registers; (a) register values after power-up with a blank configuration
EEPROM, (b) register values after power-up with the configuration EEPROM settings in Figure 9,
and (c) register names. The register names for Local Address Space 0 (LAS0) are highlighted in
blue, and the register names for DMA channel 0 are highlighted in red.

16

PLX PCI9054 Master/Target Interface June 27, 2010

PCIIDR
PCICCR

LAS0RR

00:
04:
08:
0C:
10:
14:
18:
1C:
20:
24:
28:
2C:
30:
34:
38:
3C:

905410B5
0680000A
00000100
00000000
00000000
FF800008
00000001

PCIMLR
MBOX0
MBOX1

LAS0BR
MARBR
PROT_AREA

10200000
00300600

EROMRR00000000
EROMBA00000000

4B4300C3
DMRR00000000
DMLBAM00000000
DMLBAI00000000
DMPBAM00000000

LBRD0

40: DMCFGA00000000
44: PCISID905410B5
48: LAS1RR00000000
4C: LAS1BA00000000
50: LBRD100000000
54: HS_NEXT00004C06

Figure 9: COBRA board PLX PCI9054 configuration EEPROM settings; Local Address Space 0 is
configured as an 8MB prefetchable PCI region and burst transfers are enabled on the local bus.

17

PLX PCI9054 Master/Target Interface June 27, 2010

4.2 Target-only single-transaction register interface

The simplest PCI9054 local bus target is a single 32-bit register that supports single-access read/write
transactions, i.e., no support for bursts (plx_lastN) or master wait-states (plx_waitN). Figure 10
shows a block diagram for the design implemented in plx_target_register.vhd3, while Figure 11
shows the read/write timing for the design.

Figure 11(a) shows a single clock bus turn-around phase between the address and read-data. This
turn-around phase is required, since in J-mode, the plx_ad bus is driven by the PCI9054 during the
address phase, and then driven by the FPGA during the read-data phase. The timing parameters
in Table 3 show that the PCI9054 clock-to-output delay for the plx_ad bus is between 5.0ns and
11.0ns. Timing analysis of the FPGA design indicates a clock-to-output delay of between 6.0 and
9.0ns. If the bus turn-around cycle was not present, then the FPGA would start driving read data
onto the plx_ad bus after 6.0ns (best-case), whereas the PCI9054 would still be driving the address
until 11.0ns (worst-case), thus there would be a driver conflict on the bus for 5.0ns every read cycle.

The plx_target_register.vhd design shows how a basic PLX target interface can be imple-
mented, but more importantly, it provides a hardware implementation that can be tested to confirm
the bus signal operations. For example, Figure 12 shows the read and write waveforms captured
from a COBRA board configured as described in Section 4.1, i.e., default register settings, with
access to LAS0 enabled. In Figure 12, note how during reads the write/read control, plx_wr_rdN,
is driven low for one extra clock after the end of the transaction relative to the timing shown in
Figures 2 and 11. A review of the PLX PCI9054 data book [3] shows many of the timing diagrams
have ambiguous timing for the write/read control and the byte-enables. The component designs
in this document do not care what the state of these signals is during the clock phases after a
transaction has completed, so the waveforms in Figure 2 were retained for use in verification simu-
lations. The testbench plx_target_register_tb.vhd contains test-cases for various combinations
of single-transaction reads and writes.

The hardware setup used to capture the timing waveforms in Figure 12 was also used to inves-
tigate the clock-to-output timing; the PCI9054 timing is given in Table 3, and the timing reported
for the FPGA plx_rdyN output was tCO(max) = 6.6ns. The signals driven by the PCI9054 all had
clock-to-output delays of around 5.5ns, and the FPGA clock-to-output for the ready signal was
around 6.0ns; this can be seen in Figure 12 by noting how the edges of plx_rdyN signal align fairly
well with the timing of the other control signals. The PCI9054 plx_rdyN setup/hold times from
Table 3 are 9.5ns/1.0ns, so with an FPGA clock-to-output maximum of 6.6ns, the minimum local
bus period with ideal clocks is 16.1ns (62MHz), so there is 3.9ns margin for a 50MHz (20ns) clock
and 13.9ns margin for a 33MHz (30ns) clock.

3The block diagram in Figure 10 can be compared to the post place-and-route RTL view generated by Quartus,
eg., see Tools→Netlist Viewers→RTL Viewer

18

PLX PCI9054 Master/Target Interface June 27, 2010

plx_adsN

plx_wr_rdN

plx_rdyN

plx_ad[31:0]

plx_beN[3:0] = X"0"
be

plx_wr_rdN

plx_adsN

plx_wr_rdN

plx_adsN

be

plx_adsNrdyN0
1

plx_wr_rdN

plx_ad_out[31:0]

plx_ad_oe
DQ

DQ

E

oe

we

plx_adsN

plx_wr_rdN

DQ

DQ

DQ
DQ

Figure 10: PLX PCI9054 local bus target register block diagram.

plx_hold

plx_holda

plx_adsN

plx_wr_rdN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0

R
E
A
D

A0 D0

W
R
IT
E

(a) (b)

Figure 11: PLX PCI9054 local bus target register timing; (a) read-single, and (b) write-single.

19

PLX PCI9054 Master/Target Interface June 27, 2010

plx adsN

plx wr rdN

plx lastN

plx rdyN

plx adsN

plx wr rdN

plx lastN

plx rdyN

(a)

(b)

Figure 12: PLX PCI9054 local bus target register access waveforms; (a) read-single, and (b) write-
single.

20

PLX PCI9054 Master/Target Interface June 27, 2010

plx_adsN

plx_wr_rdN

plx_lastN

plx_waitN

plx_rdyN

PLX Target
RAM FSM

plx_ad[31:0] plx_ad_out[31:0]

RAM

addr

d

q

plx_ad[31:0]

plx_ad_out[31:0]

we we

addr_load

plx_ad_in[11:2]

plx_ad_oe

plx_dp[3:0]
plx_dp_out[3:0] Parity

Generation

ram_we

plx_beN[3:0] = X"0"
be

D Q

E

plx_ad[31:0]

addr_load

plx_beN[3:0]

ram_we

be
ram_addr[9:0]

plx_ad_oe

plx_termN

Figure 13: PLX PCI9054 local bus target single-transaction RAM interface block diagram.

4.3 Target-only single-transaction RAM interface

Figure 13 shows a block diagram for RAM target that supports single-access read/write trans-
actions. This design is used to investigate burst-termination and master wait-state timing. The
target converts burst-accesses (transactions with plx_lastN high) into single-access transactions
by asserting the plx_termN signal. The target supports master wait-states by delaying the as-
sertion of px_rdyN until the wait-states complete (plx_waitN deasserts). The design shown in
Figure 13 is implemented in plx_target_ram_single.vhd, which contains the finite-state machine
plx_target_ram_single_fsm.vhd shown by the algorithmic state-machine (ASM) chart in Fig-
ure 14. Figures 15 through 18 show read and write, single and burst transactions, with and without
wait-states. The testbench plx_target_ram_single_tb.vhd reproduces all of these waveforms.

The design deliberately implements a poor target interface that will cause timing problems, and
should not be copied for any real-world design—see the hardware measurements for further discussion
on this.

21

PLX PCI9054 Master/Target Interface June 27, 2010

ID
LE pl

x_
ad

sN
1

0

ad
dr

_l
oa

d

pl
x_

w
r_

rd
N

W
A

IT

1
0

D
ef

au
lt

ou
tp

ut
s:

pl
x_

rd
yN

!p
lx

_a
d_

oe

!a
dd

r_
lo

ad

!r
am

_w
e

W
R

IT
E

pl
x_

w
ai

tN
0

1

ra
m

_w
e

da
ta

_v
al

id
0

pl
x_

te
rm

N

pl
x_

la
st

N
0

1 !p
lx

_t
er

m
N

!p
lx

_r
dy

N

1

R
E

A
D

pl
x_

w
ai

tN
0

1

pl
x_

ad
_o

e

pl
x_

la
st

N
0

1 !p
lx

_t
er

m
N

!p
lx

_r
dy

N

F
ig

ur
e

14
:

P
L
X

P
C

I9
05

4
lo

ca
l
bu

s
ta

rg
et

si
ng

le
-t

ra
ns

ac
ti

on
R

A
M

in
te

rf
ac

e
fin

it
e-

st
at

e
m

ac
hi

ne
(F

SM
).

22

PLX PCI9054 Master/Target Interface June 27, 2010

Read transactions

With reference to the FSM in Figure 14, and the read timing diagrams in Figures 15 and 16;

• Read-single

Figure 15(a) shows a read-single transaction. The assertion of plx_adsN and plx_wr_rdN
low causes the FSM to transition to the WAIT state and to generate an address load pulse
(addr_load). The FLEX10KE RAM has an address-to-data read latency of two clocks due to
the presence of input and output registers. The address load pulse is pipelined two clocks to
generate a pulse on data_valid. The FSM uses that pulse to transition to the READ state
where read data is driven onto the plx_ad bus, and since the input plx_lastN is asserted, the
output plx_rdyN is asserted low to complete the read transaction.

• Read-burst

Figure 15(b) shows a read-burst transaction. The transaction proceeds identically to a read-
single transaction up until the point where read data is driven onto the plx_ad bus. At that
point, since the target input plx_lastN is high, the target output plx_termN is asserted low
to terminate the burst. This causes the PCI9054 to generate another address phase and to
continue the read-burst. Each read phase with plx_lastN high is terminated by the target.
The last phase of a read-burst is identical to a read-single transaction. The repeated assertion
of plx_termN converts the read-burst into a series of back-to-back read-single transactions.

• Read-single with wait-states

Figure 16(a) shows a read-single transaction with three wait-states. The FSM transitions to
the READ state once the read-data from the RAM is valid. However, since the master wait-
state (target input) plx_waitN is asserted low, the target does not drive valid data onto the
bus, and does not assert plx_rdyN. It is only once the wait-state signal deasserts that the read-
data is driven onto the bus and the ready signal asserted. Three wait-states were chosen for
this example, so that the FSM would remain in the READ state for an extra clock relative to
the read-single transaction. The PCI9054 wait-state generator can be programmed for 0 to 15
clocks. Transactions with wait-states of 0, 1, or 2 will look identical to read-single transactions
(due to the read-data latency), whereas wait-states of 3 to 15 will cause an increase in the read
transaction time.

• Read-burst with wait-states

Figure 16(b) shows a read-burst transaction with three wait-states between every read. The
read-burst is converted to a series of back-to-back read-single with wait-states transactions.

23

PLX PCI9054 Master/Target Interface June 27, 2010

plx_adsN

plx_wr_rdN

plx_lastN

plx_waitN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0

R
E
A
D

plx_termN

PLX Signals

PLX Target FSM

idlestate

Target Datapath

addr_load

ram_addr[9:0] A0

0

data_valid

idle

plx_hold

plx_holda

A0

idleidle idle

A1

wait

plx_ad_oe

plx_ad_out[31:0] D0

read

wait

read

A0 D0

R
E
A
D

0

A0 D0

R
E
A
D

0

A1 D1
R
E
A
D

0

A2 D2

R
E
A
D

0

idlewait

read

idlewait idlewait

read

wait

D2

A2

D0 D1

(a) (b)

Figure 15: PLX PCI9054 local bus target single-transaction RAM read timing; (a) read-single, and
(b) read-burst.

plx_adsN

plx_wr_rdN

plx_lastN

plx_waitN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0

R
E
A
D

plx_termN

PLX Signals

PLX Target FSM

idlestate

Target Datapath

addr_load

ram_addr[9:0] A0

0

data_valid

idle

plx_hold

plx_holda

A0

idleidle idle

A1

wait

plx_ad_oe

plx_ad_out[31:0] D0

wait idlewait idlewait idlewaitwait

D2

A2

D0 D1

read read read read

A0 D0

R
E
A
D

0

A1 D1

R
E
A
D

0

A2 D2

R
E
A
D

0

(a) (b)

Figure 16: PLX PCI9054 local bus target single-transaction RAM read timing with three wait-states;
(a) read-single, and (b) read-burst.

24

PLX PCI9054 Master/Target Interface June 27, 2010

Write transactions

With reference to the FSM in Figure 14, and the write timing diagrams in Figures 17 and 18;

• Write-single

Figure 15(a) shows a write-single transaction. The assertion of plx_adsN and plx_wr_rdN
high causes the FSM to transition to the WRITE state and to generate an address load pulse
(addr_load). In the WRITE state, the FSM generates a RAM write-enable (ram_we) pulse to
write to the RAM. The FLEX10KE RAM does not have individual byte-enables, so Figure 13
shows that the byte-enables are checked to allow only 32-bit writes to the RAM. In the WRITE
state, since the input plx_lastN is asserted, the output plx_rdyN is asserted low to complete
the write transaction.

• Write-burst

Figure 17(b) shows a write-burst transaction. As with the read-burst transaction, the plx_termN
signal is asserted to break the burst into a series of back-to-back write-single transactions.

• Write-single with wait-states

Figure 18(a) shows a read-single transaction with two wait-states. The FSM transitions to the
WRITE state after the address strobe. However, since the master wait-state (target input)
plx_waitN is asserted low, the target does not generate a RAM write-enable pulse, and does
not assert plx_rdyN. It is only once the wait-state signal deasserts that the write-data is
written to the RAM and the ready signal asserted.

• Write-burst with wait-states

Figure 18(b) shows a write-burst transaction with two wait-states between every write. The
write-burst is converted to a series of back-to-back write-single with wait-states transactions.

25

PLX PCI9054 Master/Target Interface June 27, 2010

plx_adsN

plx_wr_rdN

plx_lastN

plx_waitN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0

W
R
IT
E

plx_termN

PLX Signals

PLX Target FSM

idlestate

Target Datapath

addr_load

ram_addr[9:0] A0

0

ram_we

idle

plx_hold

plx_holda

write

A0 D0

W
R
IT
E

A0

0

idle

write

idle

A1 D1

W
R
IT
E

0

A2 D2

W
R
IT
E

0

A3 D3

W
R
IT
E

0

idle

write

idle

write

idle

write

A3A1 A2

(a) (b)

Figure 17: PLX PCI9054 local bus target single-transaction RAM write timing; (a) write-single,
and (b) write-burst.

plx_adsN

plx_wr_rdN

plx_lastN

plx_waitN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0

W
R
IT
E

plx_termN

PLX Signals

PLX Target FSM

idlestate

Target Datapath

addr_load

ram_addr[9:0] A0

0

ram_we

idle

plx_hold

plx_holda

A0

idleidle idle

A2A1

write write idlewrite write

A0 D0

W
R
IT
E

0

A1 D1

W
R
IT
E

0

A2 D2

W
R
IT
E

0

(a) (b)

Figure 18: PLX PCI9054 local bus target single-transaction RAM write timing with two wait-states;
(a) write-single, and (b) write-burst.

26

PLX PCI9054 Master/Target Interface June 27, 2010

Hardware testing

Figure 19 show single-transaction waveforms for the target RAM interface, while Figure 20 shows
the same transactions with two wait-states. Relative to the target register waveforms shown in
Figure 12, the plx_wr_rdN signal has been replaced with plx_waitN, to show the effect of the wait-
states. If you carefully compare Figure 19 and Figure 20 (by toggling between the figures in the
electronic version of this document), you will notice the following;

• Read wait-state timing:

– Compare Figures 19(a) and 20(a).

– The transactions start (plx_adsN low pulse) and end (plx_rdyN low pulse) occur at
around the same time for either transaction, i.e., two wait-states has no effect on the read
timing, since the RAM data is not ready for read during that time.

– With no wait-states plx_lastN is asserted from the deassertion of plx_adsN through to
the assertion of plx_rdyN. With wait-states, plx_lastN does not assert during wait-states
(when plx_waitN is asserted).

– Careful comparison of the plx_rdyN signal timing between the two figures, shows that
falling-edge timing occurs slightly later when wait-states are used, i.e., the effective clock-
to-output changes depending on the inputs. This occurs due to the FSM generating a
combinatorial ready output based on last and wait-state inputs. The Quartus Timing
Analyzer report indicates this type of timing issue by reporting a propagation delay (tpd)
between the inputs plx_lastN and plx_waitN to the output plx_rdyN (paths are also
reported for the plx_termN and plx_ad outputs). Any such reports should be interpreted
as a warning that the design implementation needs to be improved.

– Figure 20(b) shows the read timing with three wait-states. The read data is ready after
two clocks, but the wait-states hold off the assertion of ready.

• Write wait-state timing:

– Compare Figures 19(b), and 20(a) and (b).

– The two and three wait-state examples in Figure 20 result in identical timing for both
reads and writes. The wait-states delay the assertion of plx_lastN by the master, and
the assertion of plx_rdyN by the target.

• Read burst-termination timing:

– Compare Figures 19(a), 21(a), and Figure 22(a).

– The burst transactions are 8-bytes, i.e., two 32-bit transactions.

– The first data phase of the read burst in Figure 21(a) shows the two transactions in the
burst (two assertions of address strobe). The first transaction starts with plx_lastN
high, indicating a burst. This transaction is terminated by the target via the assertion of
plx_termN. The second transaction starts with plx_lastN asserted, indicating the final
phase of the burst (or a single transaction), and this transaction ends with the assertion
of plx_rdyN.

– The read-burst setup used in Figure 21(a) was used to examine the timing of plx_wr_rdN
(not shown in the figures); the signal was observed to stay low for the duration of the
two burst transaction and then tri-state (the rising-edge was not driven high, but had an
RC-risetime characteristic). The signal remains asserted for longer bursts. This assertion
of plx_wr_rdN is consistent with the extra clock low seen Figure 12(a) at the end of the
transaction.

27

PLX PCI9054 Master/Target Interface June 27, 2010

– The timing in Figure 21(a) indicates that the target can not drive the plx_ad bus after
the end of a transaction, as within one clock, the PCI9054 could drive a new address.

• Write burst-termination timing:

– Compare Figures 19(b), 21(b), and Figure 22(b).
– The burst transactions are 8-bytes, i.e., two 32-bit transactions.
– The first data phase of the write burst in Figure 21(b) shows the two transactions in

the burst (two assertions of address strobe). The first transaction starts with plx_lastN
high, indicating a burst. This transaction is terminated by the target via the assertion of
plx_termN. The second transaction starts with plx_lastN asserted, indicating the final
phase of the burst (or a single transaction), and this transaction ends with the assertion
of plx_rdyN.

– Figure 21(b) demonstrates another issue with the cominatorial use of plx_lastN and
plx_waitN to generate the plx_termN output. The difference in propagation delays
internal to the FPGA cause the glitch on plx_termN around the time plx_rdyN asserts.
The testbench waveforms in Figure 22 show that the simulation reproduces this problem.

The variation in timing of the plx_rdyN, plx_termN, and the output data and parity (not shown) can
be eliminated by using output registers on those signals. The design in the next section demonstrates
this technique.

The single and burst transactions used to generate the figures in this and the following sections
were setup as follows;

• The COBRA board was powered-up with a blank EEPROM.

• Local address space 0 was enabled, eg. using the PCI debug tool c 4 1 (see Section 5).

• Read single; d 0 4

• Write single; c 0 12345678

• LBRD0 = 40430043 (default) for no wait-states, 4043004B for two wait-states, 4043004F for
three wait-states.

• Burst transactions were setup using a second COBRA board on the same PCI segment as a
data source or destination, and using the DMA controller on the board being probed to move
data between COBRA boards. The DMA controller programming sequence was

c 80 1C3 # DMAMODE0: Bursting enabled
c 84 FB000000 # DMAPADR0: PCI address (the other board)
c 88 0 # DMALADR0: Local bus address
c 8C 8 # DMASZI0: Number of bytes to transfer
c 90 0 # DMADPR0: 0 = PCI->LBC write burst, or

8 = LBC->PCI read burst
c A8 3 # DMACSR: Perform the DMA

where Figure 8(b) shows the DMA channel 0 registers highlighted in red. The setting for
DMADPR0 was changed to trigger write or read bursts. The DMAMODE0 register could be set
to 43 to generate two back-to-back single transactions (or DMASIZ0 could be changed to 4 to
generate the single transactions).

• Note that the local bus generates burst transfers even though the PCI space is marked as
non-prefetchable (due to the blank EEPROM).

• Back-to-back local bus transactions can be triggered by performing non-32-bit accesses, eg.
d 2 4 or c 2 11112222.

28

PLX PCI9054 Master/Target Interface June 27, 2010

plx adsN

plx lastN

plx waitN

plx rdyN

plx adsN

plx lastN

plx waitN

plx rdyN

(a)

(b)

Figure 19: PLX PCI9054 local bus target single-transaction RAM access waveforms; (a) read-single,
and (b) write-single.

29

PLX PCI9054 Master/Target Interface June 27, 2010

plx adsN

plx lastN

plx waitN

plx rdyN

plx adsN

plx lastN

plx waitN

plx rdyN

(a)

(b)

Figure 20: PLX PCI9054 local bus target single-transaction RAM access waveforms; read or write
with (a) 2 wait-states, and (b) 3 wait-states.

30

PLX PCI9054 Master/Target Interface June 27, 2010

plx adsN

plx lastN

plx termN

plx rdyN

plx adsN

plx lastN

plx termN

plx rdyN

(a)

(b)

Figure 21: PLX PCI9054 local bus target single-transaction RAM burst access waveforms; (a) read-
burst, and (b) write-burst.

31

PLX PCI9054 Master/Target Interface June 27, 2010

F 0 F 0 F F

F 0 F 0 F

F 0 F 0 F F

F 0 F 0 F

2.5 us2.4 us2.3 us2.2 us2.1 us2.0 us

plx_ad

plx_dp

plx_beN

plx_rdyN

plx_termN

plx_waitN

plx_lastN

plx_wr_rdN

plx_adsN

plx_holda

plx_hold

clk

PLX Bus

FFFFFFFF00000000 FFFFFFFF01010101 FFFFFFFF00000004 02020202 FFFFFFFFFFFFFFFF

F 0 F 0 F F

F

FFFFFFFF 00000000 01010101 FFFFFFFF 00000004 02020202 FFFFFFFF

F 0 F 0 F F

F

FFFFFFFF 00000000 01010101 FFFFFFFF 00000004 02020202 FFFFFFFFplx_ad

plx_dp

plx_beN

plx_rdyN

plx_termN

plx_waitN

plx_lastN

plx_wr_rdN

plx_adsN

plx_holda

plx_hold

clk

PLX Bus

1.0 us 1.1 us 1.2 us 1.3 us

(a)

(b)

Figure 22: PLX PCI9054 local bus target single-transaction RAM burst access simulation waveforms;
(a) read-burst, and (b) write-burst. Note that the glitch observed on plx termN in Figure 21(b) is
also present in the write-burst simulation (red circle).

32

PLX PCI9054 Master/Target Interface June 27, 2010

4.4 Target-only single/burst transaction RAM interface

The design in the previous section was used to demonstrate the operation of the plx_waitN and
plx_termN signals and implemented only single-access transactions. The designs in this section
implement single- and burst-access transactions. The designs do not support wait-states, since the
bus master will not generate them by default (and there is no need to program them). The designs
do not assert plx_termN. There are three variations on the target RAM interface implemented in
the design plx_target_ram_burst.vhd;

A) Target RAM with no input or output registers.

• Figure 23 shows the block diagram.

• Figure 24 shows the FSM; plx_target_ram_burst_a_fsm.vhd.

• Figure 25 shows the read timing.

• Figure 26 shows the write timing.

• This target RAM interface is a poor design due to the lack of input or output registers.
The same problems as discussed with the design in the previous section can be expected.
The design is included in this section, as it allows the improvement in timing due to the
addition of input and output registers to be analyzed.

B) Target RAM with output registers.

• Figure 27 shows the block diagram.

• Figure 28 shows the FSM; plx_target_ram_burst_b_fsm.vhd.

• Figure 29 shows the read timing.

• Figure 30 shows the write timing.

• The addition of output registers cuts the timing paths from the control inputs to outputs,
and cuts the paths from the internal RAM to the output, and internal RAM through the
parity logic, to the output.

C) Target RAM with input and output registers.

• Figure 31 shows the block diagram.

• Figure 32 shows the FSM; plx_target_ram_burst_c_fsm.vhd.

• Figure 33 shows the read timing.

• Figure 34 shows the write timing.

• The addition of both input and output registers cuts the majority of timing paths for signals
coming onto the FPGA. The requirement that the PLX bus not be driven after the end of
a transaction does require direct use of the plx_lastN signal to determine when to deassert
plx_rdyN and to disable plx_ad_oe (and hence the plx_ad drivers).

The boolean generics ENABLE_INPUT_REGISTERS and ENABLE_OUTPUT_REGISTERS. select the design
to test (a design with only input registers is not supported). The addition of registers to the input or
output changes the timing of the control signals and data in the design, so each design instantiates
a different FSM.

33

PLX PCI9054 Master/Target Interface June 27, 2010

plx_adsN

plx_wr_rdN

plx_lastN

plx_rdyN

PLX Target
RAM FSM

plx_ad[31:0]

plx_ad[31:0]

plx_ad_out[31:0]

plx_ad_oe

RAM
Address
Counter

addr_load load

d

q

plx_ad[11:2]

ram_addr[9:0]

addr_en en

plx_beN[3:0]
plx_beN[3:0]

plx_ad_oe

plx_dp[3:0]
plx_dp_out[3:0]

Parity
Generation

ram_we

RAM

addr

d

q

plx_ad[31:0]

plx_ad_out[31:0]

we weram_we

be
ram_addr[9:0]

= X"0"
be

addr_load

addr_en

Figure 23: PLX PCI9054 local bus target burst-transaction RAM (with no input and output regis-
ters) interface block diagram.

Target RAM with no input or output registers

• The single-transaction read and write timing in Figures 25(a) and 26(a) produce identical PLX
bus signal timing as shown for the previous design in Figures 15(a) and 17(a). However, the
internal FSMs differ in their operation.

• The FSM in Figure 24 deals with single/burst transactions using the same read or write states.

• Figure 25 shows how all read transactions are initiated as a burst, with the internal read
pipeline prefetching data from the RAM; the RAM address counter is loaded and enabled,
with valid data ready two clocks later. For a read-single transaction, only one data phase is
enabled onto the plx_ad bus.

• Figure 26 shows how write-single and write-burst transactions are dealt with. Since the master
does not generate wait-states, any transaction phase in which the target asserts plx_rdyN is a
transaction phase in which data can be written to RAM.

• The end of a transaction occurs when plx_lastN and plx_rdyN are detected asserted.

34

PLX PCI9054 Master/Target Interface June 27, 2010

ID
LE pl

x_
ad

sN
1

0

ad
dr

_l
oa

d

pl
x_

w
r_

rd
N

R
E

A
D

W
A

IT

1
0

D
ef

au
lt

ou
tp

ut
s:

rd
yN

!a
d_

oe

!a
dd

r_
lo

ad

!a
dd

r_
en

!r
am

_w
e

pl
x_

la
st

N

1

0

W
R

IT
E

pl
x_

la
st

N
0

!r
dy

N

ad
dr

_e
n

da
ta

_v
al

id
1

0

1

ra
m

_w
e

!r
dy

N

ad
_o

e

ad
dr

_e
n

ad
dr

_e
n

F
ig

ur
e

24
:

P
L
X

P
C

I9
05

4
lo

ca
lb

us
ta

rg
et

bu
rs

t-
tr

an
sa

ct
io

n
R

A
M

(w
it

h
no

in
pu

t
an

d
ou

tp
ut

re
gi

st
er

s)
in

te
rf

ac
e

fin
it

e-
st

at
e

m
ac

hi
ne

(F
SM

).

35

PLX PCI9054 Master/Target Interface June 27, 2010

plx_adsN

plx_wr_rdN

plx_lastN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0

R
E
A
D

PLX Signals

PLX Target FSM

idlestate

Target Datapath

addr_load

ram_addr[9:0] A0

0

data_valid

idle

plx_hold

plx_holda

idle idlewait

ad_oe

ad_out[31:0]

read

wait

A0 D0

R
E
A
D

0

A0 D0

R
E
A
D

0

D1

R
E
A
D

D3

R
E
A
D

idle

rdyN

addr_en

A1 A2

D0 D1 D2

read

D2
R
E
A
D

A0 A1 A5

D0 D1 D5D2 D3 D4

A2 A3 A4

(a) (b)

Figure 25: PLX PCI9054 local bus target burst-transaction RAM (with no input and output regis-
ters) read timing; (a) read-single, and (b) read-burst.

plx_adsN

plx_wr_rdN

plx_lastN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0

W
R
IT
E

PLX Signals

PLX Target FSM

idlestate

Target Datapath

addr_load

ram_addr[9:0] A0

0

ram_we

idle

plx_hold

plx_holda

write

A0 D0

W
R
IT
E

A0

0

idle

D1

W
R
IT
E

D2

W
R
IT
E

D3

W
R
IT
E

idle

A3

rdyN

write

addr_load

A1 A2

(a) (b)

Figure 26: PLX PCI9054 local bus target burst-transaction RAM (with no input and output regis-
ters) write timing; (a) write-single, and (b) write-burst.

36

PLX PCI9054 Master/Target Interface June 27, 2010

plx_adsN

plx_wr_rdN

plx_lastN

plx_rdyN

PLX Target
RAM FSM

plx_ad[31:0]

plx_ad[31:0]

ad_out[31:0]

ad_oe

RAM
Address
Counter

addr_load load

d

q

plx_ad[11:2]

ram_addr[9:0]

addr_en en

plx_beN[3:0]
plx_beN[3:0]

ad_oe

plx_dp[3:0]
dp_out[3:0] Parity

Generation

ram_we

RAM

addr

d

q

plx_ad[31:0]

ad_out[31:0]

we weram_we

be
ram_addr[9:0]

DQ

DQ

DQ

= X"0"
be

addr_load

addr_en

DQ

rdyN

Figure 27: PLX PCI9054 local bus target burst-transaction RAM (with output registers) interface
block diagram.

Target RAM with output registers

• The read timing in Figure 29 shows how the addition of the output registers delays the read
data by one clock relative to the read timing for the design without the output registers (shown
in Figure 25). Because the data is valid one clock later, the ready output needs to also be
delayed by one clock. The output register on the plx_rdyN signal ensures that requirement is
met; the FSM output rdyN is now registered as the PLX bus output plx_rdyN.

• Because the plx_rdyN signal is now delayed by a clock, the FSM write state sequence needs
to assert rdyN a clock earlier (to get the same PLX bus write timing). A comparison of the
write timing in Figure 30 with Figure 26 shows the rdyN signal asserted one clock earlier in
the design with output registers.

• The end of a transaction occurs when plx_lastN and plx_rdyN are detected asserted. The
FSM outputs the signal rdyN not plx_rdyN. To ensure the FSM correctly detects the trans-
action end, the FSM internally registers rdyN to create a signal with the same timing as
plx_rdyN. The FSM in Figure 28 uses that internal ready signal to detect the transaction end.
The use of an internal copy of the ready signal ensures that a critical timing path from the
FSM output to the PLX bus and then back to the FSM is not created.

37

PLX PCI9054 Master/Target Interface June 27, 2010

ID
LE pl

x_
ad

sN
1

0

ad
dr

_l
oa

d

pl
x_

w
r_

rd
N

W
A

IT

1
0

D
ef

au
lt

ou
tp

ut
s:

rd
yN

!a
d_

oe

!a
dd

r_
lo

ad

!a
dd

r_
en

!r
am

_w
e

da
ta

_v
al

id
1

0
pl

x_
la

st
N

0

!r
dy

N

ad
dr

_e
n

1

R
E

A
D

ad
_o

e

pl
x_

la
st

N
1

0

!r
dy

N

pl
x_

rd
yN

1
0

ad
dr

_e
n

!r
dy

N

W
R

IT
E

ra
m

_w
e

ad
dr

_e
n

F
ig

ur
e

28
:

P
L
X

P
C

I9
05

4
lo

ca
l
bu

s
ta

rg
et

si
ng

le
-t

ra
ns

ac
ti

on
R

A
M

(w
it

h
ou

tp
ut

re
gi

st
er

s)
in

te
rf

ac
e

fin
it

e-
st

at
e

m
ac

hi
ne

(F
SM

).

38

PLX PCI9054 Master/Target Interface June 27, 2010

plx_adsN

plx_wr_rdN

plx_lastN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0

R
E
A
D

PLX Signals

PLX Target FSM

idlestate

Target Datapath

addr_load

ram_addr[9:0] A0

0

data_valid

idle

plx_hold

plx_holda

idle idlewait

ad_oe

ad_out[31:0]

wait

A0 D0
R
E
A
D

0

A0 D0
R
E
A
D

0

D1

R
E
A
D

D3

R
E
A
D

idle

rdyN

addr_en

A1 A3

D0 D1 D3

read

D2

R
E
A
D

A0 A1 A6

D0 D1 D6D2 D3 D4

A2 A3 A4

read

D2

A2

D5

A5

(a) (b)

Figure 29: PLX PCI9054 local bus target burst-transaction RAM (with output registers) read
timing; (a) read-single, and (b) read-burst.

plx_adsN

plx_wr_rdN

plx_lastN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0

W
R
IT
E

PLX Signals

PLX Target FSM

idlestate

Target Datapath

addr_load

ram_addr[9:0] A0

0

ram_we

idle

plx_hold

plx_holda

write

A0 D0

W
R
IT
E

A0

0

idle

D1

W
R
IT
E

D2

W
R
IT
E

D3

W
R
IT
E

idle

A3

rdyN

write

addr_load

A1 A2

(a) (b)

Figure 30: PLX PCI9054 local bus target burst-transaction RAM (with output registers) write
timing; (a) write-single, and (b) write-burst.

39

PLX PCI9054 Master/Target Interface June 27, 2010

plx_adsN D Q

plx_wr_rdN

plx_lastN

plx_rdyN

PLX Target
RAM FSM

plx_ad[31:0]

plx_ad_in[31:0]

ad_out[31:0]

ad_oe

D Q

D Q

D Q

RAM
Address
Counter

addr_load load

d

q

plx_ad_in[11:2]

ram_addr[9:0]

addr_en en

plx_beN[3:0] D Q
plx_beN_in[3:0]

plx_rdyN

ad_oe

0
1

last

0
1

last

'0'

plx_lastN
last

'1'

rdyN

plx_dp[3:0]
dp_out[3:0] Parity

Generation

ram_we

plx_adsN_in

plx_wr_rdN_in

plx_lastN_in

DQ

RAM

addr

d

q

plx_ad_in[31:0]

ad_out[31:0]

we weram_we

be
ram_addr[9:0]

DQ

DQ

DQ

= X"0"
be

addr_load

addr_en

Figure 31: PLX PCI9054 local bus target burst-transaction RAM (with input and output registers)
interface block diagram. The last signal (in red) is used to detect the transaction end and deassert
outputs.

Target RAM with input and output registers

• The read and write timing in Figures 33 and 34 shows how the addition of input registers
delays the start of the FSM sequence by a clock. The additional input clock delay causes the
read data to be ready, and the first write phase to occur, one clock later than in the previous
design.

• The end of a transaction occurs when plx_lastN and plx_rdyN are detected asserted on the
PLX bus. The FSM uses the input signal plx_lastN_in which is delayed by one clock relative
to plx_lastN. The FSM outputs the signal rdyN, which is output as plx_rdyN. To ensure the
FSM correctly detects the transaction end, the FSM internally registers rdyN twice to create a
signal with the same timing as plx_rdyN_in. The FSM in Figure 32 uses that internal ready
signal to detect the transaction end. The use of an internal copy of the ready signal ensures
that a critical timing path from the FSM output to the PLX bus and then back to the FSM
is not created.

• The write FSM state uses the internal copy of the plx_rdyN_in signal to determine when to
enable the RAM address counter and to assert RAM write-enable, eg. see the timing of these
signals in Figure 34.

• The use of the delayed plx_lastN_in and plx_rdyN_in signals causes the FSM to detect
the transaction end one clock after it has occurred on the PLX bus. The last signal is
created using plx_lastN directly and another delayed copy of rdyN to generate a pulse at the
transaction end. This pulse is used to deassert the plx_rdyN and plx_ad_oe signals at the end
of a transaction, i.e., the FSM outputs are ignored during the last clock phase of a transaction.

40

PLX PCI9054 Master/Target Interface June 27, 2010

ID
LE pl

x_
ad

sN
1

0

ad
dr

_l
oa

d

pl
x_

w
r_

rd
N

!r
dy

N

R
E

A
D

ad
_o

e

W
A

IT

1
0

D
ef

au
lt

ou
tp

ut
s:

rd
yN

!a
d_

oe

!a
dd

r_
lo

ad

!a
dd

r_
en

!r
am

_w
e

pl
x_

la
st

N
1

0

W
R

IT
E

pl
x_

rd
yN 0

1

pl
x_

la
st

N
0

1

ra
m

_w
e

!r
dy

N

ad
dr

_e
n

ra
m

_w
e

pl
x_

rd
yN 0

1

!r
dy

N

pl
x_

rd
yN

1
0

da
ta

_v
al

id
1

ad
dr

_e
n

ad
dr

_e
n

0

F
ig

ur
e

32
:

P
L
X

P
C

I9
05

4
lo

ca
l
bu

s
ta

rg
et

si
ng

le
-t

ra
ns

ac
ti

on
R

A
M

(w
it

h
in

pu
t

an
d

ou
tp

ut
re

gi
st

er
s)

in
te

rf
ac

e
fin

it
e-

st
at

e
m

ac
hi

ne
(F

SM
).

41

PLX PCI9054 Master/Target Interface June 27, 2010

plx_adsN

plx_wr_rdN

plx_lastN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0

R
E
A
D

PLX Signals

PLX Target FSM

idlestate

Target Datapath

addr_load

ram_addr[9:0] A0

0

data_valid

idle

plx_hold

plx_holda

idle idlewait

ad_oe

ad_out[31:0]

wait

A0 D0

R
E
A
D

0

A0 D0

R
E
A
D

0

D1

R
E
A
D

D3

R
E
A
D

idle

rdyN

addr_en

A1 A4

D0 D1 D4

read

D2

R
E
A
D

A0 A1 A7

D0 D1 D7D2 D3 D4

A2 A3 A4

read

D2

A2

D5

A5

plx_adsN_in

plx_wr_rdN_in

plx_lastN_in

plx_beN_in[3:0]

plx_ad_in[31:0]

plx_rdyN_in

A0 D0

0

A0 D0

0

A0 D0

0

D1 D3D2

PLX Input Registers

A3

D3

last

A6

D6

(a) (b)

Figure 33: PLX PCI9054 local bus target burst-transaction RAM (with input and output registers)
read timing; (a) read-single, and (b) read-burst. The last signal (in red) is used in the top-level
design to detect the transaction end and deassert outputs.

42

PLX PCI9054 Master/Target Interface June 27, 2010

plx_adsN

plx_wr_rdN

plx_lastN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0

W
R
IT
E

PLX Signals

PLX Target FSM

idlestate

Target Datapath

addr_load

ram_addr[9:0] A0

0

ram_we

idle

plx_hold

plx_holda

A0 D0

W
R
IT
E

A0

0

idle

D1

W
R
IT
E

D2

W
R
IT
E

D3

W
R
IT
E

idle

A3

rdyN

write

addr_en

A1 A2

plx_adsN_in

plx_wr_rdN_in

plx_lastN_in

plx_beN_in[3:0]

plx_ad_in[31:0]

plx_rdyN_in

A0 D0

0

A0 D0

0

D1 D2 D3

PLX Input Registers

write

last

(a) (b)

Figure 34: PLX PCI9054 local bus target burst-transaction RAM (with input and output registers)
write timing; (a) write-single, and (b) write-burst. The last signal (in red) is used in the top-level
design to detect the transaction end and deassert outputs.

43

PLX PCI9054 Master/Target Interface June 27, 2010

Table 4: PLX PCI9054 local bus target burst-transaction RAM timing report.

IOE Register Worst-case value
Description Input Output tsu th tco

(ns) (ns) (ns)

Constraint 6.0 1.0 9.0

Design A OFF OFF 8.3 -1.3 11.8

Design B OFF OFF 9.3 -1.3 6.9
OFF ON 8.5 -1.3 8.7

Design C OFF OFF 4.1 -1.3 8.7
OFF ON 5.3 -1.3 8.7
ON OFF 5.9 -0.5 7.9
ON ON 5.3 -1.3 8.7

Hardware testing

Table 4 shows the timing report for the three target RAM designs (the values are the worst-case
timing parameters reported by the Quartus Timing Analyzer tool). The FPGA setup constraint
was determined based on a 50MHz clock (20ns period), worst-case PCI9054 clock-to-output delay
of 12.5ns, and a desire to have 1.5ns margin, i.e., the constraint was 20.0ns - 12.5ns - 1.5ns = 6.0ns.
The hold constraint was set to 1.0ns (since the FPGA had no problem meeting that). The clock-
to-output constraint was based on a 50MHz clock, worst-case PCI9054 setup requirement of 9.5ns,
and a desire to have 1.5ns margin, i.e., the constaint was 20.0ns - 9.5ns - 1.5ns = 9.0ns.

Table 4 shows that the only design that meets the timing requirements at 50MHz is the de-
sign with input and output registers (Design C). The FLEX10KE devices can have the input and
output registers forced into the I/O elements (IOE) on the periphery of the FPGA by setting the
FAST_INPUT_REGISTER and FAST_OUTPUT_REGISTER constraints to ON. The first two columns in Ta-
ble 4 indicate the settings for the register constraints; they did not make much difference to any of
the timing results.

The COBRA boards operate with a 33MHz clock (30ns) period, which provides an additional
10ns of timing margin. All the designs functioned correctly when tested on a COBRA board.

Figure 35 shows transaction waveforms for read and write bursts of 32-bytes. The burst transfers
were between the board and a 4kB page in host memory. Burst transfers of 4kB were also tested; the
transfers were generally completed with a single address strobe (one burst to transfer all data), i.e.,
ignoring the overhead of initial access, the transfer bursts at the maximum transfer rate of the local
bus and hence PCI bus. A PCI bus analyzer was used to confirm that the transfers were occurring
as burst transactions on the PCI bus; the 4kB transfers took around 33µs, i.e., achieved a PCI bus
bandwidth of 4kB/(33µs×220) = 118MB/s. The PCI9054 configuration EEPROM was tested blank
and programmed; similar performance was observed in either case. The 4kB transfers were initiated
by the PCI9054 DMA controller, so the most critical setting is to use a DMAMODE0 setting of 1C3
(bursting enabled).

44

PLX PCI9054 Master/Target Interface June 27, 2010

plx adsN

plx wr rdN

plx lastN

plx rdyN

plx adsN

plx wr rdN

plx lastN

plx rdyN

(a)

(b)

Figure 35: PLX PCI9054 local bus target burst-transaction RAM access waveforms; (a) read-burst,
and (b) write-burst (32-bytes, 8× 32-bit words).

45

PLX PCI9054 Master/Target Interface June 27, 2010

plx_adsN D Q

plx_wr_rdN

plx_lastN

plx_waitN

plx_rdyN

PLX Target
RAM FSM

plx_ad[31:0]

plx_ad_in[31:0]

ad_out[31:0]

ad_oe

D Q

D Q

D Q

D Q

RAM

ram_addr[9:0] addr

d

q

plx_ad_in[31:0]

ram_q[31:0]

ram_we we

RAM
Address
Counter

addr_load load

d

q

plx_ad_in[11:2]

ram_addr[9:0]

addr_en en

plx_beN[3:0] D Q
plx_beN_in[3:0]

DQ

E
plx_waitN

plx_rdyN

ad_oe

0
1

last

0
1

last

'0'

plx_lastN
last

'1'

rdyN

DQ

E
plx_waitN

DQ

E

plx_waitN

plx_dp[3:0]
dp_out[3:0]

DQ

E
plx_waitN

Parity
Generation

ad_out[31:0]

FIFO

clr

d

q

ram_q[31:0]

fifo_q[31:0]

fifo_wrreq wrreq

ad_out[31:0]

fifo_clr

fifo_rdreq rdreq
fifo_empty empty

fifo_afull afull

fifo_afull

fifo_empty

fifo_rdreq

fifo_wrreq

fifo_clr

ram_we

plx_adsN_in

plx_wr_rdN_in

plx_lastN_in

plx_waitN_in

DQ

E

0
1

fifo_q[31:0]

plx_waitN_in

D Q
plx_rdyN_in

ram_byteen[3:0] byteen

ram_byteen[3:0]

Figure 36: PLX PCI9054 local bus target burst-transaction RAM with master wait-state support
interface block diagram.

4.5 Target-only single/burst transaction RAM interface with master wait-
state support

The designs in the previous section demonstrated how to implement burst-transaction support, and
showed how input and output registers can be used to improve the design timing. This section shows
the impact of supporting master wait-states. Master wait-states do not need to be supported in a
target interface, as the PCI9054 will not generate them if it is not programmed to. The purpose of
the design in this section is to show how master wait-states complicate the pipelining of read-burst
data4. The design does not terminate bursts, so plx_termN is never asserted.

Figure 36 shows the block diagram of the target RAM design that supports burst transactions
and master wait-states5. Relative to the design that does not handle wait-states shown in Figure 31,
the changes are;

• The wait-state signal plx_waitN has been added, and is used as an enable control on the
output registers.

• The read data-path now has a FIFO on the output of the RAM, and a multiplexed register on
the output of the FIFO.

4The design also demonstrates how to handle master wait-states for bus protocols where they can not be disabled.
5Timing report; tsu = 5.2ns, th = −1.3ns, tco = 7.9ns.

46

PLX PCI9054 Master/Target Interface June 27, 2010

• The plx_rdyN signal is fed-back to the control FSM, via plx_rdyN_in, so that the effect of
wait-states on the ready handshake can be accounted for in the control FSM. The design
actually internally duplicates the path shown in the figure, so that a critical timing path is not
created.

• The RAM is shown with byte-enables. This is not actually a design change, but a diagram
change. Generics in the design control whether FLEX10KE-style RAM or Cyclone/Stratix
RAM is instantiated.

Figure 37 shows the control FSM, Figures 38 and 39 show the read timing without and with
master wait-states, and Figures 40 and 41 show the write timing without and with master wait-
states. The timing of all of these figures is a result of the logic required to implement support for
master wait-states during read-bursts, i.e., the timing in Figure 39(b).

During a read-burst, the control FSM prefetches data from the RAM and outputs it onto the
PLX bus, eg, given a burst start address A0, a short while later the read-data D0 is driven onto the
PLX bus followed a clock later by D1, and so on. Figure 39(b) shows that after the D0 transaction on
the PLX bus, the wait-state control plx_waitN asserts low, requiring that the data D1 must be held
on the PLX bus until the wait-state signal deasserts. The FSM can not implement this data holding
(wait-state) logic, as it can not react fast enough, due to the use of the PLX bus input and output
registers. The hold logic is implementing using the plx_waitN control signal directly. The wait-state
signal is used as an enable control on the plx_ad bus output registers so that when the signal is low
(wait-states inserted), the output data (eg. D1) is held on the PLX bus until the wait-state ends
(plx_waitN goes high, and the output registers are enabled). Because the data is driven onto the
PLX bus during reads by the target, and the ready signal indicates when read data is valid, the
output registers for plx_ad_out, plx_dp_out, plx_ad_oe and plx_rdyN must all be enabled using
plx_waitN as shown in Figure 36 (the figure shows the register inputs ad_out, dp_out, and ad_oe,
which once registered become the signals plx_ad_out, plx_dp_out, and plx_ad_oe, which go to
the output tri-states).

The use of plx_waitN to hold data on the PLX bus during a read-burst wait-state meets the
protocol requirement of the PLX bus. Once the wait-state signal deasserts, the next data phase must
be valid on the PLX bus, or the plx_rdyN signal needs to deassert (to indicate a target wait-state).
The bottom traces in Figure 39(b) show the signal required on ad_out to meet the requirement of
having the next data phase valid on the bus, and plx_rdyN asserted. The figure also shows the
FIFO output, fifo_q, along with FIFO read controls derived from the registered input PLX bus
control signals; the plx_waitN input register causes the output of the FIFO to change before it is
driven out onto the PLX bus (compare the fifo_q output to what is required on the plx_ad bus
on the next clock). The multiplexed register (or hold register) on the output of the FIFO acts like
a one-entry deep FIFO; it captures the output data from the FIFO, in case it is needed on the next
clock (or clocks) due to a wait-state (or wait-states). Figure 39(b) shows how the ad_out multiplexer
controlled by plx_waitN_in appropriately selects the FIFO output, fifo_q, or the hold register,
fifo_r, to deliver the appropriate read-burst data onto the plx_ad bus.

Figures 39(a) and 41(a) show how the use of the plx_waitN enable control on the plx_rdyN
output delays the first ready phase during read or write single transactions; the clock phases in
which plx_rdyN is shown with a green ellipse can not change due to the fact that plx_waitN is low,
i.e., the plx_rdyN output register is held (high), its only once plx_waitN deasserts that the FSM
signal rdyN actually makes it onto the PLX bus as plx_rdyN (low).

The design shown in Figure 36 is implemented in plx_target_ram_burst_wait.vhd, which
contains the finite-state machine plx_target_ram_burst_wait_fsm.vhd shown in Figure 37. The
testbench plx_target_ram_burst_tb.vhd is used to test both this design, and the designs from
the previous section; generics control which design to select, and whether to test master wait-states.
The testbench tests the design using linearly increasing master wait-states and randomly generated
wait-states. Figure 42 shows transaction waveforms for burst transactions with master wait-states.

47

PLX PCI9054 Master/Target Interface June 27, 2010
ID

LE pl
x_

ad
sN

1

0

ad
dr

_l
oa

d

pl
x_

w
r_

rd
N

!r
dy

N

R
E

A
D

ad
_o

e

pl
x_

w
ai

tN
0

1

W
A

IT

1
0

D
ef

au
lt

ou
tp

ut
s:

rd
yN

!a
d_

oe

!a
dd

r_
lo

ad

!a
dd

r_
en

!r
am

_w
e

pl
x_

la
st

N
1

0
W

R
IT

E

pl
x_

rd
yN 0

1

pl
x_

la
st

N
0

1

ra
m

_w
e

!r
dy

N

pl
x_

w
ai

tN

1

0

ad
dr

_e
n

ra
m

_w
e

pl
x_

rd
yN 0

1

!r
dy

N

ad
_o

e

!r
dy

N

pl
x_

w
ai

tN

1

pl
x_

rd
yN

1
0

fif
o_

af
ul

l
0

1

ad
dr

_e
n

fif
o_

w
rr

eq

fif
o_

em
pt

y
1

0

fif
o_

rd
re

q

0!fi
fo

_c
lr

!fi
fo

_w
rr

eq

!fi
fo

_r
dr

eq

fif
o_

af
ul

l
0

1

ad
dr

_e
n

fif
o_

w
rr

eq

fif
o_

rd
re

q

(1
)

(1
)

P
ip

el
in

ed
 2

x

fif
o_

cl
r

F
ig

ur
e

37
:

P
L
X

P
C

I9
05

4
lo

ca
l
bu

s
ta

rg
et

bu
rs

t-
tr

an
sa

ct
io

n
R

A
M

w
it

h
m

as
te

r
w

ai
t-

st
at

e
su

pp
or

t
in

te
rf

ac
e

fin
it

e-
st

at
e

m
ac

hi
ne

(F
SM

).

48

PLX PCI9054 Master/Target Interface June 27, 2010

plx_adsN

plx_wr_rdN

plx_lastN

plx_waitN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0 A0 D0 D1 D2 D3

R
E

A
D

R
E

A
D

R
E

A
D

R
E

A
D

R
E

A
D

plx_termN

PLX Signals

plx_adsN_in

plx_wr_rdN_in

plx_lastN_in

plx_waitN_in

plx_beN_in[3:0]

plx_ad_in[31:0]

PLX Input Registers

PLX Target FSM

state

Target Datapath

addr_load

addr_en

ram_byteen[3:0]

ram_addr[9:0]

rdyN

idle

A0

0

idle

ram_q[31:0] = fifo_d[31:0]

D0

F

idle

A0

0

idleread

D0

F

D1 D2 D3

D0 D1 D2 D3 D4 D5 D6

A0 A1 A2 A3 A4 A5 A6 A8

D8

plx_rdyN_in

wait wait

D0 D1 D2 D3

A0 A1 A2 A3 A5

D5

last

fifo_clr

fifo_wrreq

fifo_afull

fifo_empty

fifo_rdreq

fifo_q[31:0] D0 D1 D2

read

A4

D4

D0 D1 D2 D3 D4 D5

D7

A7

ad_oe

(a) (b)

Figure 38: PLX PCI9054 local bus target burst-transaction RAM with master wait-state support
read timing; (a) read-single, and (b) read-burst. The last signal (in red) is used in the top-level
design to detect the transaction end and deassert outputs.

49

PLX PCI9054 Master/Target Interface June 27, 2010

plx_adsN

plx_wr_rdN

plx_lastN

plx_waitN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0 A0 D0 D1 D2 D3

R
E

A
D

R
E

A
D

R
E

A
D

R
E

A
D

R
E

A
D

plx_termN

PLX Signals

plx_adsN_in

plx_wr_rdN_in

plx_lastN_in

plx_waitN_in

plx_beN_in[3:0]

plx_ad_in[31:0]

PLX Input Registers

PLX Target FSM

state

Target Datapath

addr_load

addr_en

ram_byteen[3:0]

ram_addr[9:0]

rdyN

idle

A0

0

idle

ram_q[31:0] = fifo_d[31:0]

D0

F

idle

A0

0

idleread

D0

F

D0 D1 D2 D3 D4 D5 D6

A0 A1 A2 A3 A4 A5 A6 AD

DD

plx_rdyN_in

wait wait

D0 D1 D2 D3

A0 A1 A2 A3 A6

D6

ad_oe

fifo_clr

fifo_wrreq

fifo_afull

fifo_empty

fifo_rdreq

fifo_q[31:0] D0 D1 D2

read

A4

D4

D0 D1 D2 D3 D4 D5

D7

A7

D5

A5

D1 D2 D3

A8 A9 AA AB A7AC

D8 D9 DA DB DC

fifo_r[31:0] D0 D1 D2 D0 D1 D2

ad_out[31:0] D0 D1 D2 D0 D1 D2 D2 D3 D4D3 D4 D5

last

D3 D4

(a) (b)

Figure 39: PLX PCI9054 local bus target burst-transaction RAM with master wait-state support
read timing; (a) read-single with four wait-states, and (b) read-burst with two wait-states. The last
signal (in red) is used in the top-level design to detect the transaction end and deassert outputs.

50

PLX PCI9054 Master/Target Interface June 27, 2010

plx_adsN

plx_wr_rdN

plx_lastN

plx_waitN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0 A0 D1 D2 D3

W
R
IT
E

W
R
IT
E

W
R
IT
E

W
R
IT
E

W
R
IT
E

plx_termN

PLX Signals

plx_adsN_in

plx_wr_rdN_in

plx_lastN_in

plx_waitN_in

plx_beN_in[3:0]

plx_ad_in[31:0]

PLX Input Registers

PLX Target FSM

idlestate

Target Datapath

addr_load

addr_en

ram_byteen[3:0]

ram_addr[9:0] A0

0

ram_we

plx_rdyN_in

A0 D0

0

F

idle idle

A0 D0

0

F

idle

D0

D1 D2 D3

A0 A1 A2 A3

rdyN

last

write write

(a) (b)

Figure 40: PLX PCI9054 local bus target burst-transaction RAM with master wait-state support
write timing; (a) write-single, and (b) write-burst. The last signal (in red) is used in the top-level
design to detect the transaction end and deassert outputs.

51

PLX PCI9054 Master/Target Interface June 27, 2010

A0 D1 D2 D3D0

plx_adsN

plx_wr_rdN

plx_lastN

plx_waitN

plx_beN[3:0]

plx_ad[31:0]

plx_rdyN

A0 D0 A0 D1 D2 D3

W
R
IT
E

W
R
IT
E

W
R
IT
E

W
R
IT
E

W
R
IT
E

plx_termN

PLX Signals

plx_adsN_in

plx_wr_rdN_in

plx_lastN_in

plx_waitN_in

plx_beN_in[3:0]

plx_ad_in[31:0]

PLX Input Registers

PLX Target FSM

idlestate

Target Datapath

addr_load

addr_en

ram_byteen[3:0]

ram_addr[9:0] A0

0

ram_we

plx_rdyN_in

A0 D0

0

F

idle idle write

F

idle

D0

A0 A1 A2 A3

rdyN

last

write

(a) (b)

Figure 41: PLX PCI9054 local bus target burst-transaction RAM with master wait-state support
write timing; (a) write-single with four wait-states, and (b) write-burst with two wait-states. The
last signal (in red) is used in the top-level design to detect the transaction end and deassert outputs.

52

PLX PCI9054 Master/Target Interface June 27, 2010

plx adsN

plx lastN

plx waitN

plx rdyN

plx adsN

plx lastN

plx waitN

plx rdyN

(a)

(b)

Figure 42: PLX PCI9054 local bus target burst-transaction RAM access waveforms with two master
wait-states; (a) read-burst, and (b) write-burst (16-bytes, 4× 32-bit words).

53

PLX PCI9054 Master/Target Interface June 27, 2010

4.6 Master/Target interface

The PLX PCI9054 local bus supports a master/target interface as described in Sections 2.6 and 2.7.
A device on the PLX PCI9054 local bus can arbitrate to acquire the bus, becoming the bus master,
and then accessing the PCI bus or PCI9054 internal registers, i.e., the PCI9054 is a target device.
The hardware tests in this document accessed the PCI9054 control registers via the PCI bus.

The COBRA board contains a Texas Instruments TMS320LC31 32-bit floating-point DSP. The
PCI9054 and DSP both interface to the system controller FPGA (Altera FLEX10KE). The system
controller FPGA implements master/target interfaces on both the PLX local bus, and the DSP local
bus. The PCI interface can be used to access devices on the DSP bus, and the DSP can access devices
on the PCI bus (though that feature is not used). The main reason for the system controller to
implement a PLX local bus master/target interface is to provide the COBRA DSP with access to the
PCI9054 internal registers so that the doorbell and mailbox registers can be used for communications
between the host CPU and DSP (see the COBRA Device Driver documentation [1]).

TODO
Add an example PCI9054 local bus FPGA master interface example. This will require a DSP BFM,
an FPGA DSP bus target interface, the FPGA internal logic, and a PLX bus master interface. This
code will need to be extracted from the COBRA HDL code.

54

PLX PCI9054 Master/Target Interface June 27, 2010

5 Software interfacing

The simplest way to develop a software interface to the PLX PCI9054 is to first start with di-
rect register access. Under recent kernels, the Linux sysfs filesystem provides device nodes that
expose the PCI base address regions (BARs) of a PCI device; see the Linux documentation file
Documentation/filesystems/sysfs-pci.txt. Older kernels that do not support the sysfs de-
vice nodes can use the pci_io.ko driver described in ‘Linux Device Driver Design’ (along with its
user-space interface) [2].

The user-space application pci_debug was developed while writing this document to access
PCI device registers. The application accesses PCI BARs using the sysfs method, and uses the
readline library to provides an interactive command-line (command history, editing, and up-arrow
access to previously entered commands). Hardware measurements in this document were obtained
by powering-up a COBRA board with a blank configuration EEPROM, then pci_debug was used to
access the PLX registers in BAR0 to enable Local Address Space 0 (LAS0). LAS0 was then accessed
and patterns written to the PLX target device (in the local bus FPGA). Read/write accesses to LAS0
were used to capture single-access transaction waveforms. Read/write burst-accesses were generated
by accessing BAR0 and programming the DMA controller to generate transfers between either a
second COBRA board, or the host CPU main memory.

DMA transfers from the COBRA board to host memory require a device driver that provides the
physical address of a block of host memory. The ‘Linux Device Driver Design’ [2] source contains
a driver, simple_memory.ko, and user-space application simple_memory_test. The driver can be
installed (using insmod), and then the kernel message log (dmesg) can be used to determine the
physical address of that memory. That address can then be used to program the DMA controller.
A PLX PCI9054 local bus write-burst transaction is generated by performing a DMA from the
host memory to the COBRA board. The simple_memory_test application can be used to write a
pattern to the memory, and then after the DMA, pci_debug can be used to view the LAS0 memory
to confirm the DMA was successful (no data corruption). A PLX PCI9054 local bus read-burst
transaction is generated by performing a DMA from the COBRA board to host memory. In this
case, pci_debug is used to setup a pattern, and simple_memory_test used to confirm it on the host
after the DMA completes.

Once the basic transfers between a host CPU and a custom board are tested, a design-specific
device driver can be developed. The COBRA board device driver is documented in detail in [1].
That driver documentation also includes a generic description on how the doorbell registers in the
PCI9054 can be used to implement flow-control between the host CPU and a target CPU located
on the local bus of the PCI9054. Documentation and source code can be accessed from ‘COBRA
docs’ link on the left-side of the page: http://www.ovro.caltech.edu/~dwh/correlator/.

55

http://www.ovro.caltech.edu/~dwh/correlator/

PLX PCI9054 Master/Target Interface June 27, 2010

References

[1] D. W. Hawkins. COBRA Device Driver. Correlator Documentation, 2006.
http://www.ovro.caltech.edu/~dwh/correlator/pdf/cobra_driver.pdf.

[2] D. W. Hawkins. LNX-723: Linux Device Driver Design. Embedded Systems Conference, 2006.
http://www.ovro.caltech.edu/~dwh/correlator/pdf/LNX-762-Hawkins.pdf.

[3] PLX Technologies, Inc. PCI 9054 PCI I/O Accelerator (version 2.1). Data Book, January 2000.
http://www.plxtech.com/.

56

http://www.ovro.caltech.edu/~dwh/correlator/pdf/cobra_driver.pdf
http://www.ovro.caltech.edu/~dwh/correlator/pdf/LNX-762-Hawkins.pdf
http://www.plxtech.com/

	1 Introduction
	2 Local bus interfacing
	2.1 Master/Target transactions
	2.2 Interface signals (J-mode)
	2.3 Bus arbitration
	2.4 Timing parameters
	2.5 PCI9054 configuration
	2.6 PCI9054 Master/FPGA Target transactions
	2.7 PCI9054 Target/FPGA Master transactions

	3 Interface Simulation
	4 Interface Examples
	4.1 PCI9054 configuration
	4.2 Target-only single-transaction register interface
	4.3 Target-only single-transaction RAM interface
	4.4 Target-only single/burst transaction RAM interface
	4.5 Target-only single/burst transaction RAM interface with master wait-state support
	4.6 Master/Target interface

	5 Software interfacing

