
Chapter 7

Example Design: I2S Versus

SPDIF

The SPDIF (Sony/Philips Digital Interface Format) and I2S (Inter-IC Sound)

standards have been developed and used by many consumer electronics

manufacturers to provide a means for transmitting digital audio information

between ICs and to eliminate the need to transmit analog signals between devices.

By keeping the signal digital until the conversion to analog can be localized, it

will be less susceptible to noise and signal degradation.

The objective of this chapter is to describe architectures for both I2S and SPDIF

receivers and to analyze the method for recovery of the asynchronous signals and

resynchronization of the audio data.

7.1 I2S

The I2S format is designed to transmit audio data up to sampling rates of

192 kHz in a source-synchronous fashion. By “source-synchronous” we are refer-

ring to the scenario where a clock is transmitted along with the data. With a

source-synchronous signal, it is not necessary to share a system clock between the

transmitting and receiving device. The sample size of the data can be 16 bits to

24 bits and is normalized to full-scale amplitude regardless of sample size. Unlike

the SPDIF format, words of different lengths cannot be interchanged without

defining the new size in the receiver.

The main design issue related to I2S is passing the samples between the

source clock domain to the local clock domain. Because the signal is transmitted

along with the source clock, the data can be easily reconstructed using the source

clock and subsequently resynchronized.

101

Advanced FPGA Design. By Steve Kilts
Copyright # 2007 John Wiley & Sons, Inc.



7.1.1 Protocol

I2S has a very simple three-wire synchronous protocol. The three signals are

defined as follows:

. LRCK (left/right channel select): When LRCK is low, the data belongs to

the left channel, and when LRCK is high, the data belongs to the right

channel.

. BCK (bit clock): This is the source-synchronous clock.

. DATA (serial audio data): This provides raw sample bits from the audio

codes. The bits are synchronous with BCK.

The timing is illustrated with the waveforms shown in Figure 7.1.

As can be seen from these waveforms, LRCK defines the channel

(low ¼ left, high ¼ right), and BCK clocks in the logic value on the DATA line.

All transitions of the LRCK and DATA take place on the falling edge of the

clock, which allows for a small amount of skew in either direction without

violating setup and hold times. The length from the MSB to the LSB is defined

by the word size, which is predefined in some manner depending on the

application. Note that many I2S receivers have multiple modes outside of the

“true” I2S format that are also considered a part of the protocol. These other

formats include right and left justification mode, but here we will only consider

the I2S format described above. Additionally, we will fix the data word size to

16 bits.

7.1.2 Hardware Architecture

The hardware architecture for an I2S module is very simple as shown in

Figure 7.2.

On every rising edge of BCK, the logic value on DATA is clocked into the

shift register. When a transition on LRCK is detected, the data word in the shift

register is loaded into an output register determined by the polarity of LRCK. The

entire I2S circuit uses BCK as the system clock to create a fully synchronous

receiver. The data, once latched in the output register, must be passed to the local

Figure 7.1 I2S timing.

102 Chapter 7 Example Design: I2S Versus SPDIF



system clock domain. Thus, the domain transition occurs at the very end of the

I2S data recovery. The implementation is shown below.

module I2S(
output reg oStrobeL, oStrobeR,
output reg [23:0] oDataL, oDataR,
input iBCK, // bit clock
input iSysClk, // local system clock
input iDataIn,
input iLRCK);
reg DataCapture;
reg rdatain;
// registers to capture input data on rising and falling
// edges of clock
reg [23:0] Capture;
// strobes for valid data
reg StrobeL, StrobeR;
reg [2:0] StrobeDelayL, StrobeDelayR;
reg [23:0] DataL, DataR;
reg LRCKPrev;
reg [4:0] bitcounter;
reg triggerleft, triggerright;

wire LRCKRise, LRCKFall;
wire [23:0] DataMux;

// detect edges of LRCK
assign LRCKRise = iLRCK & !LRCKPrev;
assign LRCKFall = !iLRCK & LRCKPrev;

// assuming 16 bit data
assign DataMux = {Capture[15:0], 8’b0};

always @(posedge iBCK) begin
DataCapture <= (bitcounter != 0);
triggerleft <= LRCKRise;
triggerright <= LRCKFall;
rdatain <= iDataIn;
// for detecting edges of LRCK
LRCKPrev <= iLRCK;

Figure 7.2 I2S architecture.

7.1 I2S 103



// capture data on rising edge, MSB first
if(DataCapture)

Capture[23:0] <= {Capture[22:0], rdatain};

// counter for left justified formats
if(LRCKRise || LRCKFall)

bitcounter <= 16;
else if(bitcounter != 0)

bitcounter <= bitcounter - 1;

// Load data into register for resynchronization
if(triggerleft) begin

DataL[23:0] <= DataMux;
StrobeL <= 1;

end
else if(triggerright) begin

DataR[23:0] <= DataMux;
StrobeR <= 1;

end
else begin

StrobeL <= 0;
StrobeR <= 0;

end
end

// resynchronize to new clock domain
always @(posedge iSysClk) begin

// delay strobes relative to data
StrobeDelayL <= {StrobeDelayL[1:0], StrobeL};
StrobeDelayR <= {StrobeDelayR[1:0], StrobeR};

// upon the rising edge of the delayed strobe
// the data has settled
if(StrobeDelayL[1] & !StrobeDelayL[2]) begin

oDataL <= DataL; // load output
oStrobeL <= 1; // single cycle strobe in

new domain
end
else

oStrobeL <= 0;

if(StrobeDelayR[1] & !StrobeDelayR[2]) begin
oDataR <= DataR; // load output
oStrobeR <= 1; // single cycle strobe in new

domain
end
else

oStrobeR <= 0;
end

endmodule

104 Chapter 7 Example Design: I2S Versus SPDIF



The first step in the above implementation is to detect a transition on LRCK so

we can clear the bit counter. This is implemented in a synchronous fashion as

shown in Figure 7.3.

Next, we need to begin capturing bits into our shift register as shown in Figure 7.4.

Finally, we use the LRCK trigger to load the shift register into the output

register and resynchronize the data with the local clock domain.

7.1.3 Analysis

When capturing and resynchronizing data from a source-synchronous data stream,

there are a number of options available to the designer. The three options

available with the I2S implementation are

1. Using a delayed validity bit to resynchronize the outputs

2. Double flopping the input stream

3. FIFO outputs

In the above implementation, we chose to use a delayed validity bit. Note

that there are a number of design considerations when choosing a method for a

particular implementation. The first consideration is speed. The advantage of the

Figure 7.4 Bit capture.

Figure 7.3 LRCK detection.

7.1 I2S 105



above implementation is that it runs at the audio bit clock speed, which in the

worst case (192 kHz) is about 12 MHz. If we were running this module at the

system clock speed, we may have to meet timing at perhaps hundreds of

megahertz. Clearly, timing compliance will be much easier at the slower clock

speed, which will allow the designer flexibility to implement low-area design

techniques and allow the synthesis tool to target a compact implementation. The

disadvantage is the increased complexity of the clock distribution and timing

analysis. The implementation results are shown for each topology at the end of

this section.

The scenario where a FIFO would be required at the outputs would arise

when the receiving system (located behind the I2S interface) cannot handle peri-

odic bursts of data. If the hardware were a pure pipeline or was at least dedicated

to the processing of the incoming audio data, this would not be a problem.

However, if the device that is capturing the data accesses the module through a

shared bus, the data cannot simply present itself as soon as it is available. In this

case, a FIFO provides a clean transition to the new domain as long as the average

data rate on the bus end is greater than the audio data rate as shown in Figure 7.5.

The implementation of Figure 7.5 will require dual-port RAM resources as

well as some control logic to implement the FIFOs. The final implementation

results for all topologies are shown in Table 7.1.

Clearly, there is a significant amount of overhead associated with the FIFO

implementation and it would not be a desirable solution unless required by the

system.

Figure 7.5 FIFO synchronization.

Table 7.1 Implementation Results for I2S Synchronization

Double-flop outputs Double-flop inputs FIFO outputs

Frequency 197 MHz 220 MHz 164 MHz

Flip-flops 62 72 130

LUTs 15 35 62

Clock buffers 2 1 2

Block RAMs 0 0 2

106 Chapter 7 Example Design: I2S Versus SPDIF



7.2 SPDIF

The SPDIF format is designed to transmit audio data up to sampling rates of

192 kHz (until recently, the maximum sampling frequency has been locked at

96 kHz, so many devices will not upsample beyond this prior to transmission).

The sample size of the data can be 16 bits to 24 bits and is normalized to full-

scale amplitude regardless of sample size. In other words, additional bits are

automatically detected as additional bits of precision and not an increase in

absolute amplitude. From an implementation perspective, a 16-bit word can be

viewed as a 24-bit word with 8 bits of zeros appended to the least significant bits

of precision. Thus, capturing the data word is the same regardless of word size

(contrast this with I2S, which must have word size and format defined prior to

capture).

The main design issue related to SPDIF is its asynchronous nature. Because

the signal is transmitted via only one wire, there is no way to directly synchronize

to the transmitting device and ultimately the audio signal. All of the information

necessary to recover the clock is encoded into the serial stream and must be

reconstructed before audio information can be extracted.

7.2.1 Protocol

Each sample of audio data is packetized into a 32-bit frame that includes

additional information such as parity, validity, and user-definable bits (the user

bits and even the validity bits are often ignored in many general-purpose devices).

For stereo applications, two frames must be transmitted for each sample period.

Thus, the bit rate must be 32*2*Fs (2.8224 MHz for 44.1 kHz, 6.144 MHz for

96 kHz, etc). The 32-bit packet format is defined in Table 7.2.

In the implementation described in this chapter, we will only decode the

audio data and preamble.

To enable the SPDIF receiver to identify distinct bits as well as to resynchro-

nize the packets, a special one-wire encoding is used called Biphase Mark Code

(BMC). With this form of encoding, the data signal transitions on every bit

regardless of whether it is encoded as a 1 or a 0. The difference between these

Table 7.2 SPDIF Frame Definition

Bits Field

31 Parity (not including the preamble)

30 Channel status information

29 Subcode data

28 Validity (0 ¼ valid)

27 : 4 Audio sample (MSB at bit 27)

3 : 0 Preamble

7.2 SPDIF 107



bits is that the SPDIF signal will transition once per bit for a logic-0 and twice

per bit for a logic-1. An example encoding is shown in Figure 7.6.

The first two waveforms shown in Figure 7.6 are the clock and data seen

by the transmitter. In a synchronous transmission medium such as I2S, this

clock as well as the synchronized data are passed to the receiver making the

data recovery trivial. When only one wire is available, the data is encoded in

BMC format as shown in the third waveform. As can be seen from this wave-

form, the clock is encoded into the data stream with the requirement of at least

one transition for every bit. Note that the clock that sources the SPDIF stream

must be twice the frequency of the audio clock to provide two transitions for

every logic-1.

Due to the fact that the encoding of a data bit must transition once per bit,

SPDIF provides a means to synchronize each frame by violating this condition

once per frame. This is performed in the preamble as shown in Table 7.3.

As can be seen from these bit sequences, each preamble violates the tran-

sition rule by allowing a sequence of three consecutive clock periods of the same

level. Detecting these preambles allows the receiver to synchronize the audio data

to the appropriate channel. For a hardware implementation, a clock with a suffi-

cient frequency must be used to be able to not only distinguish the difference

between a logic-0 and a logic-1 (a 2� difference in pulse widths) but also a

difference between a logic-0 and a preamble (a 1.5� difference in pulse widths).

7.2.2 Hardware Architecture

The basic architecture for the SPDIF receiver is shown in Figure 7.7.

Figure 7.6 Example BMC encoding.

Table 7.3 SPDIF preambles

Preamble

SPDIF signal if

last level ¼ 0

SPDIF signal if

last level ¼ 1

Left channel at the start of a data block 11101000 00010111

Left channel not at the start of a data block 11100010 00011101

Right channel 11100100 00011011

108 Chapter 7 Example Design: I2S Versus SPDIF



The pulse width detection logic contains a free-running counter that resets

whenever the input from the BMC code toggles. In addition to the counter reset,

the current width is decoded against the running minimum pulse width. If the

current width is greater than 2.5� the minimum pulse width, the pulse is decoded

as a BMC violation and part of the preamble. If the width is greater than 1.5�

the min pulse width, the pulse is decoded as a logic-0. If the width is less than

the running minimum pulse width, it overrides the minimum pulse width, and the

audio data is assumed to be invalid due to the absence of a lock. Otherwise, the

pulse is decoded as half of a logic-1.

If a logic-1 or logic-0 is detected, this bit is shifted into a 24-bit shift register

in preparation for synchronization with the preamble. When a preamble is

detected, the previous frame has completed and can now be decoded based on the

mapping of the various fields. The implementation is shown in the following code.

module spdif(
output reg oDatavalidL, oDatavalidR,
output reg [23:0] oDataL, oDataR,
input iClk, // main system clock used to

sample spdif data
input iSPDIFin);
reg [2:0] inputsr; // input shift register
reg datatoggle; // register pulses high

when data toggles
// counts the width between data transitions
reg [9:0] pulsewidthcnt;
// register to hold width between transitions
reg [9:0] pulsewidth;
reg [9:0] onebitwidth; // 1-bit width reference
// signals that pulsewidth has just become valid
reg pulsewidthvalid;
reg bitonedet; // detect logic-1 capture
reg newbitreg; // new data registered
reg [27:0] framecapture; // captured frame
reg preambledetect;
reg preamblesyncen;
reg channelsel; // select channel based

on preamble

Figure 7.7 SPDIF architecture.

7.2 SPDIF 109



reg [5:0] bitnum;
reg [10:0] onebitwidth1p5;

reg onebitload; // load 1-bit reference
width

reg onebitupdown; // 1: reference width
should increment

// width used for comparison against reference
reg [9:0] pulsewidthcomp;
reg onebitgood; // reference is equal to

input width
reg preamblesync; // flags preamble in

spdif stream
reg shiftnewdat; // ok to capture
// load data into output buffer
reg outputload, outputloadprev;
reg pulsewidthsmall, pulsewidthlarge;
reg [11:0] onebitwidth2p5;
wire trigviolation;
wire newbit; // raw data decoded from stream

// flag a violation in BMC code
assign trigviolation = {1’b0, pulsewidth[9:0], 1’b0} >

onebitwidth2p5;

// if width is small, data is 1. Otherwise data is 0
assign newbit = ({pulsewidth[9:0],1’b0} <

onebitwidth1p5[10:0]);

always @(posedge iClk) begin
inputsr <= {inputsr[1:0], iSPDIFin};

// shift data in
// trigger on change in data

datatoggle <= inputsr[2] ^ inputsr[1];

// counter for pulse width
if(datatoggle) begin

// counter resets when input toggles
pulsewidth[9:0] <= pulsewidthcnt[9:0];
pulsewidthcnt <= 2;

end
else

pulsewidthcnt <= pulsewidthcnt + 2;

// width register will be valid 1 clock after the data
toggles

pulsewidthvalid <= datatoggle;

// onebitload checks to see if input period is out of
bounds

// current width is 1/2 1-bit width
pulsewidthsmall <= ({1’b0, onebitwidth[9:1]} >

pulsewidth[9:0]);

110 Chapter 7 Example Design: I2S Versus SPDIF



// current width is 4x 1-bit width
pulsewidthlarge <= ({2’b0, pulsewidth[9:2]} >

onebitwidth);
// load new reference if out of bounds
onebitload <= pulsewidthlarge || pulse

widthsmall;

// register width comparison value
if(!newbit)

pulsewidthcomp <= {1’b0, pulsewidth[9:1]};
else

pulsewidthcomp <= pulsewidth[9:0];

// checks to see if reference is equal to input width
onebitgood <= (pulsewidthcomp == onebit

width);
// increment reference if input width is greater than

reference
onebitupdown <= (pulsewidthcomp > onebitwidth);

// keep track of 1-bit width
// load reference if input width is out of bounds
if(onebitload)

onebitwidth <= pulsewidth[9:0];
else if(!onebitgood && pulsewidthvalid) begin

// adjust reference
if(onebitupdown)

onebitwidth <= onebitwidth+1;
else

onebitwidth <= onebitwidth-1;
end

// set onebitwidth*1.5 and onebitwidth*2.5
onebitwidth1p5 <= ({onebitwidth[9:0], 1’b0} +
{1’b0, onebitwidth[9:0]});

onebitwidth2p5 <= ({onebitwidth[9:0], 2’b0} +
{2’b0, onebitwidth[9:0]});

// preamblesync is valid only when last frame has
completed

preamblesyncen <= (bitnum == 0) && datatoggle;
// trigger on preamble in spdif header if input width

> 2.5*reference
preamblesync <= preamblesyncen && trigviolation;

// capture preamble
if(preamblesync)

preambledetect <= 1;
else if(preambledetect && pulsewidthvalid)

preambledetect <= 0;

// set channel
if(preambledetect && pulsewidthvalid)

7.2 SPDIF 111



channelsel <= !trigviolation;
else if(trigviolation && pulsewidthvalid)

channelsel <= 0;

newbitreg <= newbit;
// only trigger on a bit-1 capture every other transition
if(!newbitreg)

bitonedet <= 0;
else if(newbit && datatoggle)

bitonedet <= !bitonedet;

// set flag to capture data when bit-0 or bit-1 is valid
shiftnewdat <= pulsewidthvalid && (!newbit ||

bitonedet);

// shift register for capture data
if(shiftnewdat)

framecapture[27:0] <= {newbit, framecapture[27:1]};

// increment bit counter when new bit is valid
// reset bit counter when previous frame has finished
if(outputload)

bitnum <= 0;
else if(preamblesync)

bitnum <= 1;
else if(shiftnewdat && (bitnum != 0))

bitnum <= bitnum + 1;

// data for current frame is ready
outputload <= (bitnum == 31);
outputloadprev <= outputload;

// load captured data into output register
if(outputload & !outputloadprev) begin

if(channelsel) begin
oDataR <= framecapture[23:0];
oDatavalidR <= 1;

end
else begin

oDataL <= framecapture[23:0];
oDatavalidL <= 1;

end
end
else begin

oDatavalidR <= 0;
oDatavalidL <= 0;

end
end

endmodule

The first step in the above architecture is to resynchronize the incoming data stream

to the local system clock. A double-flop technique is used as described in previous

chapters for passing a single bit across domains. This is shown in Figure 7.8.

112 Chapter 7 Example Design: I2S Versus SPDIF



Note that the bits that are used for edge detection are bits 2 and 1. Bits 0 and

1 in the shift register are used for clock synchronization only, and bit 2 is used

for the detection of a transition. The synchronized toggle flag in datatoggle is

used to reset the counter for the pulse width as shown in Figure 7.9. Notice how

the synthesis tool was able to utilize the reset and clock enable pins of the flip-

flop elements and eliminate any muxing. This was described in Chapter 2.

The next step is to determine if the pulse width is out of acceptable bounds

and whether we need to reset the running value for a 1-bit width. The logic

shown in Figure 7.10 performs the boundary condition checks and sets a bit to

reload the reference width.

Figure 7.9 SPDIF pulse width counter.

Figure 7.8 Resynchronizing the SPDIF input.

Figure 7.10 Pulse width reference.

7.2 SPDIF 113



The next block of logic is to detect a preamble. Figure 7.11 shows the scaling

of the reference width by 2.5 and performing of the frame synchronization.

Note in the implementation of Figure 7.11 that the factor of 2.5 was opti-

mally implemented by a simple shift and add of the original signal. Similarly, we

need to determine if the pulse width is indicating a bit-0 or a bit-1 (assuming the

pulse width is not indicating a preamble).

In the circuit shown in Figure 7.12, the data that is shifted into the frame-

capture shift register is dependent on the width of the current pulse. In other

words, if the current pulse width is less than 1.5� the pulse width of the value of

a single bit width, the data shifted in is a logic-1. Otherwise, the data is a logic-0.

Finally, a transition on the output load is detected (dependent on the bit

counter), the channel is selected, and the frame data is loaded into the appropriate

output register as shown in Figure 7.13.

7.2.3 Analysis

When resynchronizing a signal with an encoding such as BMC, there is no choice

but to sample this signal at the front end and map it into the local clock domain.

No processing can take place until this initial resynchronization occurs. Addition-

ally, the system clock that is used to sample the SPDIF stream must be suffi-

ciently faster than the minimum pulse width of the SPDIF stream itself to provide

Figure 7.11 Preamble detection.

Figure 7.12 Bit detection.

114 Chapter 7 Example Design: I2S Versus SPDIF



enough resolution when detecting thresholds in the pulse width. Specifically,

under all relative phases of the sampling clock to the SPDIF stream, we require

the following:

. The pulse width of a logic-0 is between 1.5� and 3� of the minimum

pulse width (logic-1).

. The pulse width of a preamble violation is between 2.5� and 4� of the

minimum pulse width.

. There are at least two clock periods of margin in the thresholds to account

for jitter of either the input stream or the system clock.

Figure 7.14 illustrates the various sampling rates.

As can be seen from this diagram, the criteria for reliable signal recovery is

when we have a sampling rate of at least 8� the maximum clock frequency (full

Figure 7.13 SPDIF output Synchronization

Figure 7.14 SPDIF sampling rates.

Table 7.4 Implementation Results in a Xilinx Spartan-3

XC3S50

Frequency 130 MHz

FFs 161

LUTs 153

7.2 SPDIF 115



period for a logic-1). For a 192-kHz sampling rate, this corresponds with a worst-

case timing of: 192 kHz-64*8 ¼ 98.304 MHz. If we target this at a Xilinx

Spartan-3 device with a 10 ns period (allowing for about 100 ps of jitter), we

obtain the results shown in Table 7.4.

Although we can easily achieve the desired frequency, the logic required to

implement the signal recovery is large relative to a source-synchronous system

such as I2S.

116 Chapter 7 Example Design: I2S Versus SPDIF


