

Simulation Quick-Start for ModelSim* - Intel[®] FPGA Edition

Intel[®] Quartus[®] Prime Pro Edition

UG-20093 2017.07.15

Last updated for Intel[®] Quartus[®] Prime Design Suite: 17.0

Contents

1 Simulation Quick-Start for ModelSim* - Intel [®] FPGA Edition (Intel [®] Quartus [®] Prime Pro Edition)	3
1.1 Open the Example Design	4
1.2 Specify EDA Tool Settings	4
1.3 Generate a Simulator Setup Script Template	5
1.4 Modify the Simulator Setup Script	5
1.5 Compile and Simulate the Design	7
1.6 View Signal Waveforms	8
1.7 Add Signals to the Simulation	10
1.8 Rerun Simulation	11
1.9 Modify the Simulation Testbench	11
2 Document Revision History	13

1 Simulation Quick-Start for ModelSim* - Intel[®] FPGA Edition (Intel[®] Quartus[®] Prime Pro Edition)

This document demonstrates how to simulate an Intel[®] Quartus[®] Prime Pro Edition design in the ModelSim^{*} - Intel FPGA Edition simulator. Design simulation verifies your design before device programming. The Intel Quartus Prime software generates simulation files for supported EDA simulators during design compilation.

Figure 1. ModelSim - Intel FPGA Edition

Design simulation involves generating simulation files, compiling simulation models, running the simulation, and viewing the results. The following steps describe this flow:

- 1. Open the Example Design on page 4
- 2. Specify EDA Tool Settings on page 4
- 3. Generate a Simulator Setup Script Template on page 5
- 4. Modify the Simulator Setup Script on page 5
- 5. Compile and Simulate the Design on page 7
- 6. View Signal Waveforms on page 8
- 7. Add Signals to the Simulation on page 10
- 8. Rerun Simulation on page 11
- 9. Modify the Simulation Testbench on page 11

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

^{*}Other names and brands may be claimed as the property of others.

1.1 Open the Example Design

The PLL_RAM example design includes Intel FPGA IP cores to demonstrate the basic simulation flow. Download the example design files and open the project in the Intel Quartus Prime software.

- *Note:* This Quick-Start requires a basic understanding of hardware description language syntax and the Intel Quartus Prime design flow, as the Intel Quartus Prime Pro Edition Foundation Online Training describes.
 - 1. Download and unzip the Quartus_Pro_PLL_RAM.zip design example from the Altera wiki.
 - 2. Launch the Intel Quartus Prime Pro Edition software.
 - 3. To open the example design project, click **File ➤ Open Project**, select the **pll_ram.qpf** project file, and then click **OK**.

1.2 Specify EDA Tool Settings

Specify EDA tool settings to generate simulation files for supported simulators.

- 1. In the Intel Quartus Prime software, click Assignments ➤ Settings ➤ EDA Tool Settings.
- 2. Under Simulation, select ModelSim-Altera as the Tool name. Retain the default settings for Format for output netlist and Output directory.

esign Entry/Synthesis		
Tool name: <a>None>		:
imulation		
Tool <u>n</u> ame: ModelSim-Int	tel FPGA	
ormat for output netlist:	Verilog HDL	\$
Output directory: simulati	ion/modelsim	
_, ,		
Map illegal <u>H</u> DL charact	ers	
Map illegal <u>H</u> DL charact	ers More EL). DA Netlist <u>W</u> riter Settings.
Map illegal <u>H</u> DL charact	ers More EL). DA Netlist <u>W</u> riter Settings.
Map illegal <u>H</u> DL charact	ers More EL v analysis)A Netlist <u>W</u> riter Settings.
Map illegal <u>H</u> DL character loard-level signal integrity	ers More EL v analysis) DA Netlist <u>W</u> riter Settings.
Map illegal <u>H</u> DL charact toard-level signal integrity For <u>m</u> at: < <u>None></u> BIS version: 4.2	ers More EC 7 analysis	DA Netlist <u>W</u> riter Settings.
Map illegal <u>H</u> DL charact Board-level signal integrity For <u>m</u> at: < <u>None></u> BIS version: <u>4.2</u> Dutput <u>d</u> irectory:	ers More ED 7 analysis	DA Netlist <u>W</u> riter Settings.
Map illegal <u>H</u> DL charact coard-level signal integrity For <u>m</u> at: < <u>None></u> BIS version: 4.2 Dutput <u>directory</u> :	ers More EC / analysis	DA Netlist <u>W</u> riter Settings.
Map illegal <u>H</u> DL charact board-level signal integrity For <u>m</u> at: < <u>None></u> BIS version: 4.2 Dutput <u>directory</u> : Enable model <u>selector</u> Enable extended mode	ers More EL v analysis	DA Netlist <u>W</u> riter Settings.

1 Simulation Quick-Start for ModelSim* - Intel[®] FPGA Edition (Intel[®] Quartus[®] Prime Pro Edition)

1.3 Generate a Simulator Setup Script Template

Simulator setup scripts help you to simulate the IP cores in your design. Follow these steps to generate the vendor-specific simulator setup script template for the IP modules in the example design. You can then customize this template for your specific simulation goals.

- 1. To compile the design, click **Processing ➤ Start Compilation**. The Messages window indicates when compilation is complete.
- Click Tools > Generate Simulator Setup Script for IP. Retain the default Output directory and Use relative paths whenever possible setting for the setup script file. The setup script template generates in the directory that you specify.

Figure 2. Generate Simulator Setup Scripts IP Dialog Box

Output directory:	data/17.0/PLL_RAM/	
V Uso rolativo na	the uthenouse passible	
✔ Use relative pa	ths whenever possible	
✔ Use relative pa	ths whenever possible	

1.4 Modify the Simulator Setup Script

Modify the generated simulator setup script to enable specific commands that simulate the IP cores in the project.

- 1. In a text editor, open the /PLL_RAM/mentor/msim_setup.tcl file.
- 2. Create a new text file with the name mentor_example.do and save it in the / PLL_RAM/mentor/ directory.
- 3. In the msim_setup.tcl file, copy the section of code enclosed within the TOP-LEVEL TEMPLATE - BEGIN and TOP-LEVEL TEMPLATE - END comments, and then paste this code into the new mentor_example.do file.
- 4. In the mentor_example.do file, delete the single pound (#) characters preceding the following highlighted lines to enable compilation commands:

Figure 3. Uncomment Highlighted Simulation Commands in the Script

set QSYS SIMDIR <script directory="" generation="" output=""></script>
--

5. Replace the following lines in the mentor_example.do script:

Table 1.Specify Values in the mentor_example.do Script

Replace this Line	With this Line
set QSYS_SIMDIR <script directory="" generation="" output=""></script>	

6. Save the /PLL_RAM/mentor/mentor_example.do file. The following figure shows the mentor_example.do file after revisions are complete:

1 Simulation Quick-Start for ModelSim* - Intel[®] FPGA Edition (Intel[®] Quartus[®] Prime Pro Edition)

Figure 4. Completed Top-Level IP Simulation Setup Script

Ln#	
1	# # TOP-LEVEL TEMPLATE - BEGIN
2	
3	# # QSYS SIMDIR is used in the Quartus-generated IP simulation script to
4	# # construct paths to the files required to simulate the IP in your quartus
2	# # project. By default, the IP script assumes that you are taunching the
0 7	# # Simulator from the IP Script tocation. If taunching from another
0	# # cocation, set usis simple to the output directory you specified when you
0	# # the simulator
10	# # che simulator.
11	cot OSYS STMDTR /
12	
13	L# # Source the generated IP simulation script.
14	source SOSYS SIMDIR/mentor/msim setup.tcl
15	B # #
16	# # Set any compilation options you require (this is unusual).
17	# set USER DEFINED COMPILE OPTIONS <compilation options=""></compilation>
18	# set USER DEFINED VHDL COMPILE OPTIONS <compilation for="" options="" vhdl=""></compilation>
19	# set USER DEFINED VERILOG COMPILE OPTIONS <compilation for="" options="" verilog=""></compilation>
20	# #
21	# # Call command to compile the Quartus EDA simulation library.
22	dev_com
23	P # #
24	<pre># # Call command to compile the Quartus-generated IP simulation files.</pre>
25	COM
26	
27	# # Add commands to compile all design files and testbench files, including
28	# # the top level. (These are all the files required for simulation other
29	# # than the files compiled by the Quartus-generated iP simulation script)
30	wing wingering work work /PLL DAM w
32	vlog -vlogolcompat -work work //IP COUNTER TP/IIP COUNTER TP v
33	vlog -vlogelcompat -work work/DOWN COUNTER TP/DOWN COUNTER TP.V
34	vlog -vlog01compat -work work/ClockPLL/ClockPLL.v
35	vlog -vlog@lcompat -work work/RAMhub/RAMhub.v
36	vlog -vlog8lcompat -work work/testbench 1.v
37	₽##
38	# # Set the top-level simulation or testbench module/entity name, which is
39	# # used by the elab command to elaborate the top level.
40	
41	set TOP_LEVEL_NAME tb
42	₽ <i>#</i> #
43	# # Set any elaboration options you require.
44	# set USER_DEFINED_ELAB_OPTIONS <elaboration options=""></elaboration>
45	# # Coll control to all boots over dealers and boots of
40	- # # Call command to elaborate your design and testbench.
4/	etab
40	La A Pup the simulation
50	add wave *
51	view structure
52	view signals
53	run -all
54	8 * *
55	# # Report success to the shell.
56	# # exit -code 0
57	L # #
58	# # TOP-LEVEL TEMPLATE - END

1.5 Compile and Simulate the Design

Run the top-level mentor_example.do script in the ModelSim - Intel FPGA Edition software to compile and simulate your design.

- 1. Launch the ModelSim Intel FPGA Edition software. The ModelSim Intel FPGA Edition GUI organizes the elements of your simulation onto separate windows and tabs.
- In PLL_RAM project directory, right-click the mentor_example.do file, select Open with, and specify the path to the ModelSim - Intel FPGA Edition executable. The file opens in ModelSim - Intel FPGA Edition. Repeat this step to open the testbench_1.v file.
- 3. To display the **Transcript** window, click **View ➤ Transcript**. You can enter commands for ModelSim Intel FPGA Edition directly in the **Transcript** window.
- 4. Type the following command in the Transcript window and then press Enter:

do mentor_example.do

The design compiles and simulates, according to your specifications in the mentor_example.do script. The following figure shows the ModelSim - Intel FPGA Edition simulator:

Figure 5. ModelSim - Intel FPGA Edition GUI

1.6 View Signal Waveforms

Follow these steps to view signals in the testbench_1.v simulation waveform:

 Click the Wave window. The simulation waveform ends at 11030 ns, as the testbench specifies. The Wave window lists the CLOCK, WE, OFFSET, RESET_N, and RD_DATA signals. 1 Simulation Quick-Start for ModelSim* - Intel® FPGA Edition (Intel® Quartus® Prime Pro Edition)

Figure 6. ModelSim - Intel FPGA Edition Wave Window

2. To view the signals in the top-level pll_ram.v design, click the **Sim** tab. The **Sim** window synchronizes with the **Objects** window.

Figure 7. ModelSim - Intel FPGA Edition Sim and Objects Windows

😰 sim - Default	1	* * * ×	Sa Objects			* # X
* Instance	Design unit	Design unit t	* Name	Value 14	• 726658	sps er a
 tb Test1 Clock_module UP_module UP_module RAM_module #ASSIGN#45 #ALWAYS#23 #INITIAL#27 \$td altera_insim_functions #vsim_capacity# 	tb PLL_RAM ClockPLL UP_COUNT DOWN_COU RAMhub PLL_RAM tb tb std altera_Insi	Module Module Module Module Process Process ViPackage ViPackage Capacity		0000 Not L St0 St0 0111 1100 Not L Not L	Net Ou Net In Net In Net In Net In Net Int Net Int	t t t t t t t t t t t t t t t t t t t
🕽 🔥 Library 🛪 🙀 Memory List	× 🛺 sim ×					
New 11 020 cc. Dubu 0		an ab Gott a	the module			

- To view the top-level module signals, expand the tb folder in the Objects tab. Similarly, expand the Test1 folder. The Objects window displays the UP_module, DOWN_module, PLL_module, and RAM_module signals.
- 4. In the **Sim** window, click a module under **Test1** to display the module's signals in the **Objects** window.
- 5. View the simulation library files in the **Library** window.

Figure 8. ModelSim - Intel FPGA Edition Library Window

Library		ni 100 carra 🔊 🛃
• Name	Type	Path
💽 🎎 work	Library	/libraries/work/
ClockPLL	Library	./libraries/ClockPLL/
DOWN_COUNTER_IP	Library	./libraries/DOWN_COUNTER_IP/
RAMhub	Library	,/libraries/RAMhub/
. LUP_COUNTER_IP	Library	_/libraries/UP_COUNTER_IP/
altera_iopil_170	Library	./libraries/altera_iopll_170/
Ipm_counter_170	Library	./libraries/lpm_counter_170/
ram_2port_170	Library	./6braries/ram_2port_170/
M work lib	Library	/libraries/work/
A libraries (empty)	Library	/data/dnielsen/17.0/PLL_RAM/mentor/
220model	Library	\$MODEL_TECH//altera/vhdl/220model
220model ver	Library	SMODEL_TECH//altera/verilog/220m
🗈 🍂 altera	Library	\$MODEL_TECH//altera/vhdl/altera
🗉 🎎 altera Insim	Library	SMODEL_TECH//altera/vhdl/altera_In
A altera Insim ver	Library	\$MODEL_TECH//altera/verilog/altera
• A altera mf	Library	SMODEL TECH//altera/vhdl/altera mf
A altera mf ver	Library	SMODEL TECH//altera/verilog/altera
At altera ver	Library	SMODEL TECH//altera/verilog/altera
 A cyclone10gx 	Library	SMODEL TECH//altera/vhdl/cyclone1
 A cyclone10gx ver 	Library	SMODEL TECH/. /altera/verilog/cyclon
fourteennm	Library	\$MODEL_TECH//altera/vhdl/fourteen
fourteennm ct1	Library	\$MODEL_TECH//altera/vhdl/fourteen
• A fourteennm ct1 ver	Library	SMODEL TECH//altera/verilog/fourte
• A fourteennm ver	Library	SMODEL TECH//altera/verilog/fourte
· A lom	Library	SMODEL TECH/. /altera/vhdl/220model
• A lom ver	Library	SMODEL TECH/. /altera/verilog/220m.
• A soate	Library	SMODEL TECH/. /altera/vhdl/soate
• A soate ver	Library	SMODEL TECH//altera/verilog/sgate
• AL sy std	Library	SMODEL TECH/. /sv std
• A twentynm	Library	SMODEL TECH//altera/vhdl/twentynm
• A twentynm hip	Library	SMODEL TECH/. /altera/vhdl/twentyn
• A twentynm hip ver	Library	SMODEL TECH/. /altera/verilog/twent.
• At twentynm hssi	Library	SMODEL TECH/. /altera/vhdl/twentyn.
• A twentynm hssi ver	Library	SMODEL TECH/. /altera/verilog/twent
• A twentynm ver	Library	SMODEL TECH/. /altera/verilog/twent
• A vital2000	Library	SMODEL TECH/ Avital2000
. At icee	Library	SMODEL TECH/_/jeee
• t modelsim lib	Library	SMODEL TECH/. /modelsim lib
• tt std	Library	SMODEL TECH/. /std
• # std developerskit	Library	SMODEL TECH//std developerskit
synoosys	Library	SMODEL TECH/ /synopsys
• A verilog	Library	SMODEL TECH/ Averilon

1.7 Add Signals to the Simulation

The CLOCK, WE, OFFSET, RESET_N, and RD_DATA signals automatically appear in the **Wave** window because the top-level design defines these I/O. In addition, you can optionally add internal signals to the simulation.

- 1. In the **Objects** window, locate the UP_module, DOWN_module, PLL_module, and RAM_module modules.
- 2. In the **Objects** window, select **RAM_module**. The module's inputs and outputs display.

Figure 9. Add Signals To Wave Window

- 3. To add the internal signals between the down-counter and dual-port RAM module, right-click **rdaddress** and then click **Add Wave**.
- 4. To add the internal signals between the up-counter and dual-port RAM module, right-click wraddress and then click Add Wave. Alternatively, you can drag and drop these signals from the Objects window to the Wave window.
- 5. To generate the waveforms for the new signals you add, click **Simulate ➤ Run ➤ Continue**.

1.8 Rerun Simulation

You must rerun the simulation if you make changes to the simulation setup, such as adding signals to the **Wave** window, or modifying the testbench_1.v file. Follow these steps to rerun simulation:

- 1. In the ModelSim Intel FPGA Edition simulator, click **Simulate ➤ Restart**. Retain the default options and click **OK**. These options clear the waveforms and restart the simulation time, while retaining the necessary signals and settings.
 - *Note:* Alternatively, you can re-run the /PLL_RAM/mentor/mentor_example.do script to re-run simulation at the command line.
- Click Simulate ➤ Run ➤ Run -all. The testbench_1.v file simulates according to the testbench specifications. To continue simulation, click Simulate ➤ Run ➤ Continue. This command continues the simulation until you click the Stop button.

1.9 Modify the Simulation Testbench

The testbench_1.v example testbench tests only a specific set of conditions and test cases. You can manually edit the testbench_1.v file in the ModelSim - Intel FPGA Edition simulator to test other cases and conditions:

- 1. Open the testbench_1.v file in the ModelSim Intel FPGA Edition simulator.
- 2. Right-click in the <code>testbench_1.v</code> file to confirm that the file is not set to Read Only.
- 3. Enter and save any additional testbench parameters in the testbench_1.v file.
- To generate the waveforms for a testbench that you modify, click Simulate ➤ Restart.
- 5. Click Simulate ➤ Run ➤ Run -all.

2 Document Revision History

This document has the following revision history.

Table 2. Document Revision History

Date	Changes
2017.07.15	Initial release.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. *Other names and brands may be claimed as the property of others.

